Normalized defining polynomial
\( x^{15} - 6 x^{14} + 15 x^{13} - 16 x^{12} - 24 x^{11} + 108 x^{10} - 116 x^{9} + 54 x^{8} + 216 x^{7} - 258 x^{6} + 87 x^{5} + 117 x^{4} - 264 x^{3} + 18 x^{2} + 108 x + 27 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13845573412916166484263=-\,3^{17}\cdot 101^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{105} a^{12} + \frac{12}{35} a^{11} - \frac{34}{105} a^{9} - \frac{16}{35} a^{8} + \frac{2}{7} a^{7} + \frac{34}{105} a^{6} - \frac{9}{35} a^{4} + \frac{13}{35} a^{3} + \frac{3}{35} a^{2} - \frac{17}{35} a - \frac{11}{35}$, $\frac{1}{2415} a^{13} - \frac{4}{2415} a^{12} - \frac{68}{161} a^{11} + \frac{281}{2415} a^{10} - \frac{998}{2415} a^{9} - \frac{45}{161} a^{8} - \frac{641}{2415} a^{7} - \frac{125}{483} a^{6} + \frac{131}{805} a^{5} + \frac{58}{805} a^{4} + \frac{43}{805} a^{3} - \frac{32}{805} a^{2} + \frac{284}{805} a - \frac{10}{161}$, $\frac{1}{5706357615} a^{14} - \frac{29893}{1902119205} a^{13} - \frac{162438}{634039735} a^{12} + \frac{828732539}{5706357615} a^{11} - \frac{169651777}{634039735} a^{10} - \frac{41731339}{1902119205} a^{9} - \frac{65584843}{1141271523} a^{8} + \frac{7273928}{380423841} a^{7} - \frac{36458593}{380423841} a^{6} + \frac{107641378}{1902119205} a^{5} + \frac{838368536}{1902119205} a^{4} - \frac{304078106}{634039735} a^{3} + \frac{195121433}{1902119205} a^{2} + \frac{32747164}{90577105} a - \frac{259314576}{634039735}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 359715.566347 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.2727.1, 5.1.91809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |