Normalized defining polynomial
\( x^{15} - 15 x^{12} + 40 x^{11} - 38 x^{10} + 75 x^{9} - 400 x^{8} + 705 x^{7} + 120 x^{6} + 353 x^{5} - 2575 x^{4} + 5150 x^{3} - 6965 x^{2} + 3315 x - 2601 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1227174699306488037109375=-\,5^{26}\cdot 7^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{21} a^{9} - \frac{1}{7} a^{8} + \frac{2}{21} a^{7} - \frac{2}{21} a^{6} + \frac{1}{21} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{21} a^{2} - \frac{1}{3} a - \frac{3}{7}$, $\frac{1}{63} a^{10} - \frac{1}{63} a^{9} + \frac{1}{21} a^{8} + \frac{1}{7} a^{7} + \frac{4}{63} a^{6} - \frac{5}{21} a^{4} + \frac{1}{63} a^{3} + \frac{25}{63} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{63} a^{11} - \frac{1}{63} a^{9} + \frac{1}{9} a^{7} + \frac{10}{63} a^{6} + \frac{1}{21} a^{5} + \frac{13}{63} a^{4} + \frac{17}{63} a^{3} + \frac{31}{63} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{3969} a^{12} + \frac{23}{3969} a^{11} - \frac{22}{3969} a^{10} - \frac{17}{3969} a^{9} - \frac{599}{3969} a^{8} + \frac{103}{1323} a^{7} - \frac{556}{3969} a^{6} - \frac{500}{3969} a^{5} + \frac{31}{3969} a^{4} + \frac{188}{3969} a^{3} - \frac{1780}{3969} a^{2} + \frac{314}{1323} a + \frac{199}{441}$, $\frac{1}{3969} a^{13} + \frac{16}{3969} a^{11} - \frac{5}{1323} a^{10} - \frac{82}{3969} a^{9} + \frac{100}{3969} a^{8} + \frac{86}{3969} a^{7} - \frac{104}{1323} a^{6} + \frac{191}{3969} a^{5} - \frac{25}{189} a^{4} - \frac{242}{567} a^{3} + \frac{932}{3969} a^{2} - \frac{514}{1323} a - \frac{104}{441}$, $\frac{1}{2643628777839} a^{14} + \frac{2884810}{155507575167} a^{13} - \frac{11413597}{155507575167} a^{12} + \frac{3899626160}{2643628777839} a^{11} - \frac{2173382752}{377661253977} a^{10} + \frac{381736102}{64478750679} a^{9} + \frac{47293418737}{377661253977} a^{8} + \frac{28996168753}{2643628777839} a^{7} + \frac{155713333169}{2643628777839} a^{6} - \frac{126316975541}{2643628777839} a^{5} + \frac{863930648500}{2643628777839} a^{4} + \frac{164467985131}{377661253977} a^{3} - \frac{1034753844197}{2643628777839} a^{2} - \frac{184610378429}{881209592613} a + \frac{8183585395}{17278619463}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6587237.04765 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.175.1, 5.1.19140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | R | $15$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |