Normalized defining polynomial
\( x^{15} - 4 x^{14} + 15 x^{13} - 35 x^{12} + 81 x^{11} - 154 x^{10} + 281 x^{9} - 520 x^{8} + 867 x^{7} - 1306 x^{6} + 1697 x^{5} - 2077 x^{4} + 2255 x^{3} - 1866 x^{2} + 1049 x - 257 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1201048696703974609375=-\,5^{10}\cdot 103^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{33} a^{11} + \frac{4}{33} a^{10} - \frac{5}{33} a^{9} + \frac{5}{33} a^{7} + \frac{2}{33} a^{6} + \frac{7}{33} a^{5} - \frac{4}{11} a^{3} - \frac{1}{11} a^{2} + \frac{7}{33} a - \frac{1}{11}$, $\frac{1}{495} a^{12} + \frac{1}{99} a^{11} - \frac{67}{495} a^{10} - \frac{71}{495} a^{9} + \frac{71}{495} a^{8} - \frac{37}{495} a^{7} - \frac{46}{495} a^{6} - \frac{158}{495} a^{5} - \frac{67}{495} a^{4} + \frac{19}{99} a^{3} - \frac{8}{99} a^{2} + \frac{4}{495} a - \frac{14}{495}$, $\frac{1}{495} a^{13} - \frac{2}{495} a^{11} - \frac{4}{55} a^{10} - \frac{8}{165} a^{9} - \frac{62}{495} a^{8} - \frac{71}{495} a^{7} - \frac{26}{165} a^{6} - \frac{4}{15} a^{5} + \frac{20}{99} a^{4} + \frac{1}{9} a^{3} - \frac{2}{15} a^{2} + \frac{101}{495} a - \frac{40}{99}$, $\frac{1}{65040525} a^{14} + \frac{34454}{65040525} a^{13} + \frac{62122}{65040525} a^{12} - \frac{875869}{65040525} a^{11} - \frac{648019}{7226725} a^{10} + \frac{9748198}{65040525} a^{9} - \frac{7127}{289069} a^{8} + \frac{882619}{13008105} a^{7} + \frac{1150333}{7226725} a^{6} - \frac{137644}{13008105} a^{5} - \frac{2407562}{7226725} a^{4} + \frac{10332404}{65040525} a^{3} - \frac{9680113}{65040525} a^{2} - \frac{3802364}{13008105} a - \frac{28614226}{65040525}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72424.3618661 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.2575.1, 5.1.10609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $15$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $103$ | $\Q_{103}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |