Normalized defining polynomial
\( x^{15} - 5 x^{14} - 5 x^{13} - 265 x^{12} + 1265 x^{11} - 8284 x^{10} + 62805 x^{9} - 340470 x^{8} - 18871785 x^{7} + 41596335 x^{6} - 14726448 x^{5} - 1841961870 x^{4} + 3220463205 x^{3} - 21861208260 x^{2} + 1653437610 x - 48460084002 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1152275901087640214484331783593750000000000=-\,2^{10}\cdot 3^{13}\cdot 5^{17}\cdot 41^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $636.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{15} a^{5} + \frac{1}{3} a^{2} - \frac{1}{5}$, $\frac{1}{45} a^{6} + \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{2}{5} a$, $\frac{1}{45} a^{7} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{135} a^{8} - \frac{1}{135} a^{7} - \frac{4}{135} a^{5} - \frac{4}{27} a^{4} - \frac{1}{45} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{7425} a^{9} - \frac{17}{7425} a^{8} + \frac{64}{7425} a^{7} - \frac{13}{7425} a^{6} - \frac{14}{675} a^{5} + \frac{1187}{7425} a^{4} - \frac{218}{2475} a^{3} - \frac{298}{825} a^{2} - \frac{103}{275} a - \frac{9}{25}$, $\frac{1}{913275} a^{10} + \frac{37}{913275} a^{9} - \frac{854}{913275} a^{8} - \frac{737}{83025} a^{7} + \frac{4094}{913275} a^{6} + \frac{17621}{913275} a^{5} + \frac{44798}{304425} a^{4} + \frac{22178}{101475} a^{3} - \frac{722}{3075} a^{2} - \frac{3262}{11275} a + \frac{488}{1025}$, $\frac{1}{2739825} a^{11} + \frac{1}{2739825} a^{10} + \frac{28}{2739825} a^{9} + \frac{5294}{2739825} a^{8} - \frac{29143}{2739825} a^{7} + \frac{4822}{547965} a^{6} - \frac{2941}{913275} a^{5} - \frac{1019}{33825} a^{4} - \frac{48086}{101475} a^{3} - \frac{12836}{33825} a^{2} - \frac{16354}{33825} a + \frac{67}{205}$, $\frac{1}{41097375} a^{12} + \frac{4}{41097375} a^{11} + \frac{4}{41097375} a^{10} - \frac{61}{1643895} a^{9} - \frac{116}{149445} a^{8} + \frac{41549}{41097375} a^{7} + \frac{9907}{13699125} a^{6} - \frac{13784}{507375} a^{5} + \frac{3299}{60885} a^{4} + \frac{508}{1845} a^{3} - \frac{162226}{507375} a^{2} + \frac{84257}{169125} a + \frac{1454}{5125}$, $\frac{1}{1356213375} a^{13} - \frac{8}{1356213375} a^{12} - \frac{179}{1356213375} a^{11} - \frac{223}{1356213375} a^{10} - \frac{5771}{271242675} a^{9} - \frac{4082491}{1356213375} a^{8} - \frac{621679}{452071125} a^{7} + \frac{1159391}{150690375} a^{6} - \frac{735191}{50230125} a^{5} - \frac{54488}{372075} a^{4} - \frac{4983931}{16743375} a^{3} + \frac{763127}{1860375} a^{2} - \frac{206633}{620125} a + \frac{23379}{56375}$, $\frac{1}{202268025455330109091460272781625} a^{14} + \frac{5713955004750860829982}{67422675151776703030486757593875} a^{13} - \frac{675311976582887673558308}{67422675151776703030486757593875} a^{12} - \frac{26471439061209433557124241}{202268025455330109091460272781625} a^{11} + \frac{18752314638721296987512632}{67422675151776703030486757593875} a^{10} - \frac{799792985745569711574074062}{67422675151776703030486757593875} a^{9} - \frac{337436584853852731232004495926}{202268025455330109091460272781625} a^{8} + \frac{19459337958202009812172290998}{6129334104706973002771523417625} a^{7} + \frac{36790281832100447362939922219}{22474225050592234343495585864625} a^{6} + \frac{1925943545598711012295624361}{277459568525830053623402294625} a^{5} - \frac{74581641162480322544864252321}{2497136116732470482610620651625} a^{4} - \frac{494449139755206768515951862356}{2497136116732470482610620651625} a^{3} - \frac{43638392871643878477391380709}{277459568525830053623402294625} a^{2} + \frac{81642539273627994293189811364}{277459568525830053623402294625} a - \frac{2786746186665322015887480478}{8407865712903941018890978625}$
Class group and class number
$C_{5}\times C_{15}$, which has order $75$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 190438426101124.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.12300.2, 5.1.715270753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{15}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $41$ | 41.5.4.1 | $x^{5} - 41$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.10.9.8 | $x^{10} + 318816$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |