Normalized defining polynomial
\( x^{15} - 5 x^{14} + 55 x^{13} - 460 x^{12} + 2165 x^{11} - 9901 x^{10} + 55665 x^{9} - 418770 x^{8} + 7842555 x^{7} - 17116785 x^{6} + 19156149 x^{5} + 446434740 x^{4} - 768468060 x^{3} - 1472601870 x^{2} + 5757007770 x + 5802471126 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11274121380851814944915771484375000000000000=-\,2^{12}\cdot 3^{13}\cdot 5^{28}\cdot 541^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $741.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 541$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{6} + \frac{2}{15} a^{4} - \frac{1}{3} a^{3} - \frac{7}{15} a^{2} - \frac{2}{5}$, $\frac{1}{15} a^{7} + \frac{2}{15} a^{5} - \frac{2}{15} a^{3} + \frac{1}{3} a^{2} - \frac{2}{5} a$, $\frac{1}{45} a^{8} - \frac{1}{45} a^{7} - \frac{7}{45} a^{5} + \frac{4}{45} a^{4} + \frac{4}{15} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{45} a^{9} - \frac{1}{45} a^{7} - \frac{1}{45} a^{6} - \frac{1}{15} a^{5} - \frac{2}{45} a^{4} + \frac{1}{3} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{675} a^{10} - \frac{1}{135} a^{9} - \frac{1}{135} a^{8} + \frac{1}{135} a^{7} + \frac{1}{135} a^{6} - \frac{17}{135} a^{5} + \frac{2}{45} a^{4} - \frac{1}{3} a^{3} + \frac{2}{15} a^{2} + \frac{1}{5} a + \frac{2}{25}$, $\frac{1}{2025} a^{11} + \frac{1}{2025} a^{10} - \frac{4}{405} a^{9} + \frac{1}{405} a^{8} - \frac{2}{405} a^{7} - \frac{1}{81} a^{6} - \frac{19}{135} a^{5} - \frac{7}{45} a^{4} + \frac{1}{3} a^{3} + \frac{1}{5} a^{2} + \frac{7}{75} a + \frac{9}{25}$, $\frac{1}{30375} a^{12} - \frac{2}{30375} a^{11} - \frac{14}{30375} a^{10} + \frac{22}{6075} a^{9} - \frac{59}{6075} a^{8} - \frac{179}{6075} a^{7} + \frac{2}{405} a^{6} - \frac{28}{225} a^{5} - \frac{13}{225} a^{4} + \frac{44}{225} a^{3} - \frac{98}{1125} a^{2} - \frac{83}{375} a + \frac{13}{125}$, $\frac{1}{30375} a^{13} - \frac{1}{10125} a^{11} + \frac{7}{30375} a^{10} + \frac{1}{405} a^{9} - \frac{19}{2025} a^{8} - \frac{178}{6075} a^{7} - \frac{17}{2025} a^{6} + \frac{26}{225} a^{5} - \frac{32}{225} a^{4} + \frac{164}{375} a^{3} - \frac{74}{225} a^{2} - \frac{92}{375} a + \frac{26}{125}$, $\frac{1}{92894342432935933497102720166814382538824375} a^{14} + \frac{747735047047950945154039979225779099666}{92894342432935933497102720166814382538824375} a^{13} - \frac{1362581701504359492013405783236562607639}{92894342432935933497102720166814382538824375} a^{12} + \frac{18948568644058134553467708944111449447961}{92894342432935933497102720166814382538824375} a^{11} - \frac{9989091276524558635503908626133604343294}{92894342432935933497102720166814382538824375} a^{10} - \frac{135507635186922206761691404192215478724804}{18578868486587186699420544033362876507764875} a^{9} + \frac{6578504131127480082665362678053870626302}{688106240243969877756316445680106537324625} a^{8} + \frac{1633959797966613267744535533227679308243}{137621248048793975551263289136021307464925} a^{7} + \frac{4926340559511155500860077598337828573123}{688106240243969877756316445680106537324625} a^{6} + \frac{12812512916302030179786358209424198832969}{229368746747989959252105481893368845774875} a^{5} - \frac{570927650256450671533060859204403128557028}{3440531201219849388781582228400532686623125} a^{4} + \frac{136713106550086726878820771791455547105698}{382281244579983265420175803155614742958125} a^{3} - \frac{15266496992284192751327068567709383457759}{127427081526661088473391934385204914319375} a^{2} - \frac{33739709809981599757940354089308867921829}{127427081526661088473391934385204914319375} a + \frac{21037412834755211999681897153972747721606}{127427081526661088473391934385204914319375}$
Class group and class number
$C_{15}$, which has order $15$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1314224105020017.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.8115.1, 5.1.2531250000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.5.9.2 | $x^{5} + 55$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.17 | $x^{10} + 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |
| 541 | Data not computed | ||||||