Normalized defining polynomial
\( x^{15} - 5 x^{13} + 15 x^{11} - 2 x^{10} + 17 x^{9} - 156 x^{8} - 156 x^{7} + 454 x^{6} + 120 x^{5} - 1736 x^{4} - 668 x^{3} - 408 x^{2} + 32 x - 8 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10960030903507135433728=-\,2^{10}\cdot 523^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 523$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{5}{12} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{108} a^{11} - \frac{1}{108} a^{10} - \frac{1}{27} a^{9} + \frac{1}{36} a^{8} + \frac{2}{27} a^{7} + \frac{13}{54} a^{6} - \frac{19}{108} a^{5} + \frac{1}{54} a^{4} - \frac{2}{27} a^{3} - \frac{1}{2} a^{2} + \frac{2}{9} a + \frac{5}{27}$, $\frac{1}{1080} a^{12} - \frac{1}{540} a^{11} - \frac{13}{360} a^{10} - \frac{1}{54} a^{9} + \frac{1}{216} a^{8} + \frac{1}{20} a^{7} + \frac{11}{120} a^{6} - \frac{19}{45} a^{5} + \frac{229}{540} a^{4} + \frac{13}{54} a^{3} + \frac{7}{18} a^{2} - \frac{127}{270} a - \frac{23}{270}$, $\frac{1}{16200} a^{13} + \frac{1}{8100} a^{12} - \frac{1}{600} a^{11} - \frac{53}{8100} a^{10} + \frac{131}{3240} a^{9} - \frac{17}{2025} a^{8} - \frac{67}{3240} a^{7} + \frac{23}{810} a^{6} - \frac{307}{900} a^{5} + \frac{199}{2025} a^{4} + \frac{119}{810} a^{3} - \frac{1417}{4050} a^{2} + \frac{493}{1350} a - \frac{401}{2025}$, $\frac{1}{108945000} a^{14} - \frac{973}{36315000} a^{13} - \frac{10097}{54472500} a^{12} + \frac{1661}{108945000} a^{11} + \frac{66713}{9078750} a^{10} + \frac{475303}{36315000} a^{9} - \frac{35413}{1008750} a^{8} + \frac{1038559}{21789000} a^{7} - \frac{13068761}{108945000} a^{6} - \frac{24386531}{54472500} a^{5} - \frac{4968317}{18157500} a^{4} + \frac{3731621}{9078750} a^{3} + \frac{1491611}{27236250} a^{2} + \frac{5811007}{13618125} a - \frac{13207483}{27236250}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 336028.882665 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30 |
| The 9 conjugacy class representatives for $D_{15}$ |
| Character table for $D_{15}$ |
Intermediate fields
| 3.1.2092.1, 5.1.273529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 523 | Data not computed | ||||||