Normalized defining polynomial
\( x^{15} - 5 x^{14} - 105 x^{13} + 185 x^{12} + 5665 x^{11} + 6647 x^{10} - 147465 x^{9} - 703515 x^{8} - 21445 x^{7} + 13204145 x^{6} + 23655453 x^{5} - 136700405 x^{4} - 387843005 x^{3} - 592258115 x^{2} - 600143435 x - 1744422601 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1036257839565777636208518400000000000000000=-\,2^{23}\cdot 5^{17}\cdot 61^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $632.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{20} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a + \frac{9}{20}$, $\frac{1}{20} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{5} a + \frac{1}{4}$, $\frac{1}{20} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{5} a^{2} + \frac{1}{4}$, $\frac{1}{40} a^{8} - \frac{1}{4} a^{4} + \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{200} a^{9} + \frac{1}{200} a^{8} - \frac{1}{50} a^{7} - \frac{1}{50} a^{6} - \frac{1}{50} a^{5} + \frac{1}{50} a^{4} + \frac{1}{50} a^{3} + \frac{21}{50} a^{2} + \frac{59}{200} a + \frac{59}{200}$, $\frac{1}{24400} a^{10} + \frac{3}{6100} a^{9} - \frac{163}{24400} a^{8} - \frac{1}{3050} a^{7} + \frac{101}{12200} a^{6} - \frac{17}{1220} a^{5} - \frac{801}{12200} a^{4} - \frac{72}{1525} a^{3} + \frac{7293}{24400} a^{2} + \frac{363}{1525} a + \frac{10749}{24400}$, $\frac{1}{24400} a^{11} + \frac{59}{24400} a^{9} - \frac{63}{12200} a^{8} + \frac{27}{12200} a^{7} - \frac{71}{3050} a^{6} - \frac{103}{12200} a^{5} + \frac{309}{6100} a^{4} - \frac{5479}{24400} a^{3} - \frac{423}{3050} a^{2} - \frac{4413}{24400} a + \frac{1813}{12200}$, $\frac{1}{244000} a^{12} - \frac{1}{122000} a^{11} - \frac{1}{61000} a^{10} - \frac{39}{24400} a^{9} - \frac{203}{48800} a^{8} + \frac{567}{61000} a^{7} - \frac{407}{30500} a^{6} - \frac{943}{61000} a^{5} + \frac{5663}{48800} a^{4} - \frac{281}{24400} a^{3} - \frac{21861}{61000} a^{2} + \frac{40129}{122000} a - \frac{20149}{244000}$, $\frac{1}{244000} a^{13} + \frac{1}{122000} a^{11} + \frac{1}{122000} a^{10} - \frac{13}{48800} a^{9} - \frac{1391}{122000} a^{8} + \frac{53}{12200} a^{7} - \frac{1481}{61000} a^{6} - \frac{5049}{244000} a^{5} - \frac{33}{200} a^{4} - \frac{24947}{122000} a^{3} + \frac{5349}{24400} a^{2} + \frac{31897}{244000} a - \frac{37239}{122000}$, $\frac{1}{1441521332576955549348423906404000} a^{14} + \frac{61168351403819696392483821}{1441521332576955549348423906404000} a^{13} - \frac{135627626527256430317378641}{72076066628847777467421195320200} a^{12} + \frac{321245616813769893220150977}{360380333144238887337105976601000} a^{11} + \frac{105393238311695855427123145}{11532170660615644394787391251232} a^{10} - \frac{1346660309771656226803443423347}{1441521332576955549348423906404000} a^{9} + \frac{417815971884463320746147008847}{360380333144238887337105976601000} a^{8} - \frac{727071181186443516542233225101}{36038033314423888733710597660100} a^{7} + \frac{11062132074780033386855408541459}{1441521332576955549348423906404000} a^{6} - \frac{7102403996857478344720456342981}{288304266515391109869684781280800} a^{5} - \frac{57008394819316568056034662102101}{360380333144238887337105976601000} a^{4} + \frac{75476064691419189005823284921}{2418659953988180451926885749000} a^{3} + \frac{28051237777985236705444398201067}{288304266515391109869684781280800} a^{2} + \frac{426887121984588060895182698775183}{1441521332576955549348423906404000} a - \frac{2608258566463459334257287873581}{72076066628847777467421195320200}$
Class group and class number
$C_{10}\times C_{10}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26746181066439.71 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times F_5$ (as 15T11):
| A solvable group of order 120 |
| The 15 conjugacy class representatives for $F_5 \times S_3$ |
| Character table for $F_5 \times S_3$ |
Intermediate fields
| 3.1.12200.1, 5.1.692292050000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.19.49 | $x^{10} - 6$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $5$ | 5.15.17.3 | $x^{15} - 5 x^{13} + 10 x^{12} + 10 x^{11} + 10 x^{9} - 5 x^{8} - 10 x^{6} + 10 x^{5} + 5 x^{3} + 10$ | $15$ | $1$ | $17$ | $F_5 \times S_3$ | $[5/4]_{12}^{2}$ |
| $61$ | 61.5.4.3 | $x^{5} - 244$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.10.9.9 | $x^{10} + 7808$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |