Normalized defining polynomial
\( x^{14} - 525 x^{12} - 518 x^{11} + 109942 x^{10} + 211890 x^{9} - 11363289 x^{8} - 32202766 x^{7} + 562633386 x^{6} + 2124722810 x^{5} - 8943505081 x^{4} - 47478809070 x^{3} - 109890439183 x^{2} - 304854167870 x - 299096421324 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-194600400675149389603579413527667469123584=-\,2^{16}\cdot 3^{8}\cdot 7^{10}\cdot 13^{7}\cdot 294467^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $889.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 294467$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{5} - \frac{2}{7} a^{3} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{7} - \frac{1}{14} a^{6} - \frac{3}{7} a^{5} + \frac{5}{14} a^{4} - \frac{2}{7} a^{3} - \frac{3}{14} a^{2} - \frac{1}{2} a - \frac{1}{7}$, $\frac{1}{14} a^{8} - \frac{1}{14} a^{6} - \frac{5}{14} a^{5} + \frac{1}{14} a^{4} - \frac{5}{14} a^{3} + \frac{2}{7} a^{2} + \frac{1}{14} a + \frac{3}{7}$, $\frac{1}{42} a^{9} + \frac{1}{42} a^{7} - \frac{1}{42} a^{6} - \frac{1}{42} a^{5} + \frac{5}{42} a^{4} - \frac{1}{21} a^{3} - \frac{19}{42} a^{2} + \frac{8}{21} a + \frac{3}{7}$, $\frac{1}{42} a^{10} + \frac{1}{42} a^{8} - \frac{1}{42} a^{7} - \frac{1}{42} a^{6} + \frac{5}{42} a^{5} - \frac{1}{21} a^{4} - \frac{19}{42} a^{3} + \frac{8}{21} a^{2} + \frac{3}{7} a$, $\frac{1}{126} a^{11} + \frac{1}{63} a^{8} - \frac{1}{63} a^{7} - \frac{1}{14} a^{6} + \frac{10}{63} a^{5} + \frac{1}{6} a^{4} - \frac{5}{42} a^{3} + \frac{1}{18} a^{2} + \frac{23}{126} a - \frac{5}{21}$, $\frac{1}{2646} a^{12} + \frac{4}{1323} a^{11} + \frac{1}{294} a^{10} - \frac{25}{2646} a^{9} + \frac{34}{1323} a^{8} + \frac{46}{1323} a^{7} + \frac{73}{1323} a^{6} + \frac{626}{1323} a^{5} - \frac{13}{49} a^{4} - \frac{185}{2646} a^{3} + \frac{79}{2646} a^{2} + \frac{626}{1323} a - \frac{148}{441}$, $\frac{1}{69258400437048130248544362507243679635773742} a^{13} - \frac{2687269746153511587681373256249530721149}{34629200218524065124272181253621839817886871} a^{12} + \frac{6662338506293638390591022817677087923801}{69258400437048130248544362507243679635773742} a^{11} - \frac{2490508320556335842827017166839653684126}{706718371806613573964738392931057955467079} a^{10} - \frac{153824057151405274159260300657235175016581}{23086133479016043416181454169081226545257914} a^{9} - \frac{87914703012497413054276954023509147714257}{23086133479016043416181454169081226545257914} a^{8} + \frac{86852303826044765071136208637845175225906}{3847688913169340569363575694846871090876319} a^{7} + \frac{1835356813816197808151952758806402486122763}{34629200218524065124272181253621839817886871} a^{6} - \frac{12186296507075495793932726800507178202490286}{34629200218524065124272181253621839817886871} a^{5} - \frac{1968021657759576761517521981475697266142165}{4947028602646295017753168750517405688269553} a^{4} - \frac{4102172395895522142569364456458978876362126}{11543066739508021708090727084540613272628957} a^{3} - \frac{11064305380504016326560284287658238394389641}{23086133479016043416181454169081226545257914} a^{2} - \frac{12807492446886271981351289705450614744808621}{34629200218524065124272181253621839817886871} a + \frac{4223192697253247229885059821991321574948319}{11543066739508021708090727084540613272628957}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30039155053300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3528 |
| The 35 conjugacy class representatives for [F_42(7)^2]2=F_42(7)wr2 |
| Character table for [F_42(7)^2]2=F_42(7)wr2 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.12.16.11 | $x^{12} + 20 x^{10} - 44 x^{8} - 4 x^{6} - 16 x^{4} - 48$ | $6$ | $2$ | $16$ | $C_3\times (C_3 : C_4)$ | $[2]_{3}^{6}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 294467 | Data not computed | ||||||