Normalized defining polynomial
\( x^{14} - 7 x^{13} + 17 x^{12} + 5 x^{11} - 129 x^{10} + 279 x^{9} - 59 x^{8} - 741 x^{7} + 1251 x^{6} - 237 x^{5} - 1340 x^{4} + 1237 x^{3} + 252 x^{2} - 733 x - 109 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12272026890292239799=-\,107^{3}\cdot 21557^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $107, 21557$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{12} - \frac{2}{9} a^{10} - \frac{1}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{4}{9} a^{2} - \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{179405762876937} a^{13} + \frac{8582933240155}{179405762876937} a^{12} - \frac{7775199896456}{179405762876937} a^{11} + \frac{65982281588809}{179405762876937} a^{10} + \frac{24707871064556}{179405762876937} a^{9} + \frac{64599771410443}{179405762876937} a^{8} - \frac{3338669205029}{59801920958979} a^{7} - \frac{13594548033458}{59801920958979} a^{6} - \frac{561312550513}{59801920958979} a^{5} + \frac{3636919381529}{19933973652993} a^{4} + \frac{75105695658664}{179405762876937} a^{3} - \frac{29102175134873}{59801920958979} a^{2} - \frac{5376991131922}{59801920958979} a - \frac{31402552327147}{179405762876937}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19239.1613611 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 322560 |
| The 55 conjugacy class representatives for 1/2[2^7]S(7) are not computed |
| Character table for 1/2[2^7]S(7) is not computed |
Intermediate fields
| 7.5.2306599.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.4.3.2 | $x^{4} - 107$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 21557 | Data not computed | ||||||