Normalized defining polynomial
\( x^{14} - 7 x^{13} + 7 x^{12} + 35 x^{11} - 77 x^{10} + 35 x^{9} + 147 x^{8} - 309 x^{7} + 21 x^{6} + 308 x^{5} - 203 x^{4} + 140 x^{3} + 49 x^{2} - 322 x - 68 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5517907805219086266381=3^{19}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{2}{9} a^{4} + \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{135} a^{11} + \frac{1}{27} a^{10} + \frac{19}{135} a^{9} - \frac{7}{45} a^{8} + \frac{8}{45} a^{7} - \frac{1}{3} a^{6} + \frac{2}{5} a^{5} - \frac{14}{45} a^{4} - \frac{1}{9} a^{3} + \frac{38}{135} a^{2} - \frac{14}{135} a + \frac{23}{135}$, $\frac{1}{14985} a^{12} - \frac{38}{14985} a^{11} + \frac{29}{14985} a^{10} + \frac{1772}{14985} a^{9} - \frac{32}{1665} a^{8} - \frac{2279}{4995} a^{7} - \frac{53}{555} a^{6} - \frac{473}{4995} a^{5} - \frac{2}{555} a^{4} + \frac{6983}{14985} a^{3} + \frac{1592}{14985} a^{2} + \frac{62}{2997} a - \frac{7424}{14985}$, $\frac{1}{14415570} a^{13} + \frac{107}{14415570} a^{12} + \frac{5311}{1601730} a^{11} + \frac{252397}{14415570} a^{10} + \frac{974267}{14415570} a^{9} + \frac{63721}{4805190} a^{8} + \frac{323413}{4805190} a^{7} + \frac{1880077}{4805190} a^{6} - \frac{1264073}{4805190} a^{5} - \frac{1631291}{7207785} a^{4} + \frac{3831307}{14415570} a^{3} + \frac{7654}{36963} a^{2} + \frac{1014881}{14415570} a + \frac{275635}{1441557}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2315086.73291 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 336 |
| The 9 conjugacy class representatives for $SO(3,7)$ |
| Character table for $SO(3,7)$ |
Intermediate fields
| \(\Q(\sqrt{21}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.9.4 | $x^{6} + 6 x^{4} + 6$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 3.6.9.4 | $x^{6} + 6 x^{4} + 6$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 7 | Data not computed | ||||||