Properties

Label 14.6.53160535153...0000.1
Degree $14$
Signature $[6, 4]$
Discriminant $2^{16}\cdot 3^{7}\cdot 5^{7}\cdot 7^{15}$
Root discriminant $68.79$
Ramified primes $2, 3, 5, 7$
Class number $8$ (GRH)
Class group $[2, 4]$ (GRH)
Galois group 14T40

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![37711, 60004, 11039, 17472, -21021, -19208, 7595, 3408, -427, -140, -91, 0, -7, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 7*x^12 - 91*x^10 - 140*x^9 - 427*x^8 + 3408*x^7 + 7595*x^6 - 19208*x^5 - 21021*x^4 + 17472*x^3 + 11039*x^2 + 60004*x + 37711)
 
gp: K = bnfinit(x^14 - 7*x^12 - 91*x^10 - 140*x^9 - 427*x^8 + 3408*x^7 + 7595*x^6 - 19208*x^5 - 21021*x^4 + 17472*x^3 + 11039*x^2 + 60004*x + 37711, 1)
 

Normalized defining polynomial

\( x^{14} - 7 x^{12} - 91 x^{10} - 140 x^{9} - 427 x^{8} + 3408 x^{7} + 7595 x^{6} - 19208 x^{5} - 21021 x^{4} + 17472 x^{3} + 11039 x^{2} + 60004 x + 37711 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(53160535153896145920000000=2^{16}\cdot 3^{7}\cdot 5^{7}\cdot 7^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $68.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{8} a^{8} - \frac{1}{12} a^{7} - \frac{1}{4} a^{5} - \frac{5}{12} a^{3} - \frac{5}{24} a^{2} - \frac{1}{6} a + \frac{7}{24}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{4} a^{5} - \frac{1}{6} a^{4} - \frac{7}{24} a^{3} + \frac{1}{6} a^{2} + \frac{11}{24} a + \frac{1}{12}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{11} - \frac{1}{72} a^{10} + \frac{5}{72} a^{9} - \frac{1}{36} a^{8} + \frac{1}{18} a^{7} + \frac{1}{9} a^{5} - \frac{1}{8} a^{4} + \frac{29}{72} a^{3} + \frac{1}{72} a^{2} + \frac{1}{24} a + \frac{17}{36}$, $\frac{1}{3115178948364057352576368} a^{13} - \frac{1937580809144075202181}{3115178948364057352576368} a^{12} - \frac{3764410641055350137887}{778794737091014338144092} a^{11} - \frac{31256534501552571728363}{1557589474182028676288184} a^{10} + \frac{315826495718470024320529}{3115178948364057352576368} a^{9} - \frac{182458718060663630268155}{3115178948364057352576368} a^{8} - \frac{19090045140876834724961}{259598245697004779381364} a^{7} + \frac{112719955218093902835011}{778794737091014338144092} a^{6} + \frac{221535750471905269905877}{1038392982788019117525456} a^{5} + \frac{418112318300437060316429}{3115178948364057352576368} a^{4} - \frac{129722993576671985444911}{389397368545507169072046} a^{3} - \frac{27572989530843197700923}{173065497131336519587576} a^{2} + \frac{176317255572800470764559}{3115178948364057352576368} a - \frac{436074749591246736221519}{1038392982788019117525456}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17661388.6759 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T40:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2688
The 20 conjugacy class representatives for 1/2[2^7]F_42(7)
Character table for 1/2[2^7]F_42(7)

Intermediate fields

7.7.177885288000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 16 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.16.3$x^{14} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2$$14$$1$$16$14T35$[8/7, 8/7, 8/7, 10/7, 10/7, 10/7]_{7}^{3}$
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
7Data not computed