Normalized defining polynomial
\( x^{14} - 7 x^{12} - 91 x^{10} - 140 x^{9} - 427 x^{8} + 3408 x^{7} + 7595 x^{6} - 19208 x^{5} - 21021 x^{4} + 17472 x^{3} + 11039 x^{2} + 60004 x + 37711 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53160535153896145920000000=2^{16}\cdot 3^{7}\cdot 5^{7}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{8} a^{8} - \frac{1}{12} a^{7} - \frac{1}{4} a^{5} - \frac{5}{12} a^{3} - \frac{5}{24} a^{2} - \frac{1}{6} a + \frac{7}{24}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{4} a^{5} - \frac{1}{6} a^{4} - \frac{7}{24} a^{3} + \frac{1}{6} a^{2} + \frac{11}{24} a + \frac{1}{12}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{11} - \frac{1}{72} a^{10} + \frac{5}{72} a^{9} - \frac{1}{36} a^{8} + \frac{1}{18} a^{7} + \frac{1}{9} a^{5} - \frac{1}{8} a^{4} + \frac{29}{72} a^{3} + \frac{1}{72} a^{2} + \frac{1}{24} a + \frac{17}{36}$, $\frac{1}{3115178948364057352576368} a^{13} - \frac{1937580809144075202181}{3115178948364057352576368} a^{12} - \frac{3764410641055350137887}{778794737091014338144092} a^{11} - \frac{31256534501552571728363}{1557589474182028676288184} a^{10} + \frac{315826495718470024320529}{3115178948364057352576368} a^{9} - \frac{182458718060663630268155}{3115178948364057352576368} a^{8} - \frac{19090045140876834724961}{259598245697004779381364} a^{7} + \frac{112719955218093902835011}{778794737091014338144092} a^{6} + \frac{221535750471905269905877}{1038392982788019117525456} a^{5} + \frac{418112318300437060316429}{3115178948364057352576368} a^{4} - \frac{129722993576671985444911}{389397368545507169072046} a^{3} - \frac{27572989530843197700923}{173065497131336519587576} a^{2} + \frac{176317255572800470764559}{3115178948364057352576368} a - \frac{436074749591246736221519}{1038392982788019117525456}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17661388.6759 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2688 |
| The 20 conjugacy class representatives for 1/2[2^7]F_42(7) |
| Character table for 1/2[2^7]F_42(7) |
Intermediate fields
| 7.7.177885288000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.16.3 | $x^{14} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $14$ | $1$ | $16$ | 14T35 | $[8/7, 8/7, 8/7, 10/7, 10/7, 10/7]_{7}^{3}$ |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||