/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^14 - x^13 - 6*x^12 + 6*x^11 + 21*x^10 - 17*x^9 - 41*x^8 + 33*x^7 + 27*x^6 - 48*x^5 - 14*x^4 + 67*x^3 + 13*x^2 - 23*x - 1, 14, 6, [6, 4], 353814783205469041, [29], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, 1/3866720701*a^13 + 93724502/3866720701*a^12 + 1615565235/3866720701*a^11 - 165171182/3866720701*a^10 - 480708181/3866720701*a^9 + 1043311009/3866720701*a^8 - 390968476/3866720701*a^7 + 626122195/3866720701*a^6 - 1304309112/3866720701*a^5 - 1794254853/3866720701*a^4 - 638877666/3866720701*a^3 - 1636244331/3866720701*a^2 + 1787368349/3866720701*a - 506518963/3866720701], 0, 1, [], 0, [ (11172933)/(3866720701)*a^(13) + (14500948)/(3866720701)*a^(12) - (248299739)/(3866720701)*a^(11) + (38625258)/(3866720701)*a^(10) + (1155472539)/(3866720701)*a^(9) - (360036562)/(3866720701)*a^(8) - (3144495501)/(3866720701)*a^(7) + (509667848)/(3866720701)*a^(6) + (4392515221)/(3866720701)*a^(5) - (2315466030)/(3866720701)*a^(4) - (807657534)/(3866720701)*a^(3) + (2256238024)/(3866720701)*a^(2) + (3742898997)/(3866720701)*a - (4819331188)/(3866720701) , (57837121)/(3866720701)*a^(13) - (387893158)/(3866720701)*a^(12) - (164277552)/(3866720701)*a^(11) + (1723546754)/(3866720701)*a^(10) + (224754472)/(3866720701)*a^(9) - (4831290411)/(3866720701)*a^(8) - (1195446420)/(3866720701)*a^(7) + (5237187069)/(3866720701)*a^(6) - (1886922431)/(3866720701)*a^(5) + (861786554)/(3866720701)*a^(4) + (2152600534)/(3866720701)*a^(3) + (11633664050)/(3866720701)*a^(2) + (2872346369)/(3866720701)*a - (3969290482)/(3866720701) , (11172933)/(3866720701)*a^(13) + (14500948)/(3866720701)*a^(12) - (248299739)/(3866720701)*a^(11) + (38625258)/(3866720701)*a^(10) + (1155472539)/(3866720701)*a^(9) - (360036562)/(3866720701)*a^(8) - (3144495501)/(3866720701)*a^(7) + (509667848)/(3866720701)*a^(6) + (4392515221)/(3866720701)*a^(5) - (2315466030)/(3866720701)*a^(4) - (807657534)/(3866720701)*a^(3) + (2256238024)/(3866720701)*a^(2) + (3742898997)/(3866720701)*a - (952610487)/(3866720701) , (230514543)/(3866720701)*a^(13) - (364245000)/(3866720701)*a^(12) - (1384181212)/(3866720701)*a^(11) + (1856622854)/(3866720701)*a^(10) + (4758233735)/(3866720701)*a^(9) - (5126061897)/(3866720701)*a^(8) - (9762891486)/(3866720701)*a^(7) + (6875745914)/(3866720701)*a^(6) + (4631010069)/(3866720701)*a^(5) - (6509595483)/(3866720701)*a^(4) - (555326948)/(3866720701)*a^(3) + (15899632472)/(3866720701)*a^(2) + (2970314949)/(3866720701)*a - (1782574583)/(3866720701) , (290350411)/(3866720701)*a^(13) - (202740511)/(3866720701)*a^(12) - (1572544721)/(3866720701)*a^(11) + (1055670632)/(3866720701)*a^(10) + (5308285583)/(3866720701)*a^(9) - (2215213081)/(3866720701)*a^(8) - (9240048182)/(3866720701)*a^(7) + (3950223297)/(3866720701)*a^(6) + (4449946885)/(3866720701)*a^(5) - (7437363052)/(3866720701)*a^(4) - (7376712676)/(3866720701)*a^(3) + (11186979952)/(3866720701)*a^(2) + (4911979812)/(3866720701)*a - (995344400)/(3866720701) , (102569781)/(3866720701)*a^(13) - (160406902)/(3866720701)*a^(12) - (227525528)/(3866720701)*a^(11) + (779696238)/(3866720701)*a^(10) + (430418647)/(3866720701)*a^(9) - (1968440749)/(3866720701)*a^(8) + (625929390)/(3866720701)*a^(7) + (4580249193)/(3866720701)*a^(6) - (2467802982)/(3866720701)*a^(5) - (3036427057)/(3866720701)*a^(4) - (2297763488)/(3866720701)*a^(3) + (4719574793)/(3866720701)*a^(2) - (10300256897)/(3866720701)*a - (5231451332)/(3866720701) , (464997450)/(3866720701)*a^(13) + (80376940)/(3866720701)*a^(12) - (2374178017)/(3866720701)*a^(11) - (99772628)/(3866720701)*a^(10) + (7933995730)/(3866720701)*a^(9) + (2140451649)/(3866720701)*a^(8) - (10803241388)/(3866720701)*a^(7) + (1674799424)/(3866720701)*a^(6) + (5067121764)/(3866720701)*a^(5) - (12551426038)/(3866720701)*a^(4) - (15212229052)/(3866720701)*a^(3) + (5571354009)/(3866720701)*a^(2) - (433221220)/(3866720701)*a - (2294352064)/(3866720701) , (23082036)/(3866720701)*a^(13) - (568549408)/(3866720701)*a^(12) + (342516191)/(3866720701)*a^(11) + (2774081923)/(3866720701)*a^(10) - (2218826873)/(3866720701)*a^(9) - (8654300028)/(3866720701)*a^(8) + (5403573116)/(3866720701)*a^(7) + (12554628244)/(3866720701)*a^(6) - (11969640381)/(3866720701)*a^(5) - (1701162068)/(3866720701)*a^(4) + (12119213249)/(3866720701)*a^(3) + (7489378597)/(3866720701)*a^(2) - (11277665471)/(3866720701)*a + (1240588251)/(3866720701) , (420264790)/(3866720701)*a^(13) - (147109316)/(3866720701)*a^(12) - (2310930041)/(3866720701)*a^(11) + (844077888)/(3866720701)*a^(10) + (7728331555)/(3866720701)*a^(9) - (722398013)/(3866720701)*a^(8) - (12624617198)/(3866720701)*a^(7) + (2331737300)/(3866720701)*a^(6) + (5648002315)/(3866720701)*a^(5) - (8653212427)/(3866720701)*a^(4) - (10761865030)/(3866720701)*a^(3) + (12485443266)/(3866720701)*a^(2) + (12739382046)/(3866720701)*a - (1032191214)/(3866720701) ], 2704.14349754, [[x^7 - x^6 - 12*x^5 + 7*x^4 + 28*x^3 - 14*x^2 - 9*x - 1, 1]]]