Properties

Label 14.6.31034937472...5849.2
Degree $14$
Signature $[6, 4]$
Discriminant $29^{2}\cdot 577^{6}$
Root discriminant $24.68$
Ramified primes $29, 577$
Class number $1$
Class group Trivial
Galois group 14T28

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, 3, 19, -82, 25, 188, -279, 104, 36, -45, 31, -2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 - 2*x^12 + 31*x^11 - 45*x^10 + 36*x^9 + 104*x^8 - 279*x^7 + 188*x^6 + 25*x^5 - 82*x^4 + 19*x^3 + 3*x^2 + 3*x + 1)
 
gp: K = bnfinit(x^14 - 4*x^13 - 2*x^12 + 31*x^11 - 45*x^10 + 36*x^9 + 104*x^8 - 279*x^7 + 188*x^6 + 25*x^5 - 82*x^4 + 19*x^3 + 3*x^2 + 3*x + 1, 1)
 

Normalized defining polynomial

\( x^{14} - 4 x^{13} - 2 x^{12} + 31 x^{11} - 45 x^{10} + 36 x^{9} + 104 x^{8} - 279 x^{7} + 188 x^{6} + 25 x^{5} - 82 x^{4} + 19 x^{3} + 3 x^{2} + 3 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(31034937472703515849=29^{2}\cdot 577^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $29, 577$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a$, $\frac{1}{25} a^{12} - \frac{2}{25} a^{11} + \frac{9}{25} a^{9} - \frac{7}{25} a^{8} + \frac{6}{25} a^{7} + \frac{9}{25} a^{6} + \frac{1}{5} a^{5} + \frac{7}{25} a^{4} - \frac{6}{25} a^{3} - \frac{12}{25} a^{2} - \frac{6}{25} a - \frac{6}{25}$, $\frac{1}{3001946675} a^{13} - \frac{7811372}{3001946675} a^{12} + \frac{58678889}{600389335} a^{11} + \frac{74326754}{3001946675} a^{10} + \frac{38642314}{428849525} a^{9} + \frac{278527726}{3001946675} a^{8} + \frac{381044714}{3001946675} a^{7} - \frac{6587925}{120077867} a^{6} + \frac{634456247}{3001946675} a^{5} + \frac{25416827}{428849525} a^{4} + \frac{629499768}{3001946675} a^{3} - \frac{46762207}{230918975} a^{2} + \frac{121215347}{428849525} a - \frac{14252124}{600389335}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24075.6001562 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T28:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 896
The 20 conjugacy class representatives for [2^6]D(7)
Character table for [2^6]D(7)

Intermediate fields

7.7.192100033.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 siblings: data not computed
Degree 16 sibling: data not computed
Degree 28 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ R ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
577Data not computed