Properties

Label 14.6.29902801024...0000.1
Degree $14$
Signature $[6, 4]$
Discriminant $2^{12}\cdot 3^{9}\cdot 5^{7}\cdot 7^{15}$
Root discriminant $66.02$
Ramified primes $2, 3, 5, 7$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 14T40

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2630, -22820, -68124, -72338, 4942, 34706, -1372, -3403, 357, -119, 175, -119, 35, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 7*x^13 + 35*x^12 - 119*x^11 + 175*x^10 - 119*x^9 + 357*x^8 - 3403*x^7 - 1372*x^6 + 34706*x^5 + 4942*x^4 - 72338*x^3 - 68124*x^2 - 22820*x - 2630)
 
gp: K = bnfinit(x^14 - 7*x^13 + 35*x^12 - 119*x^11 + 175*x^10 - 119*x^9 + 357*x^8 - 3403*x^7 - 1372*x^6 + 34706*x^5 + 4942*x^4 - 72338*x^3 - 68124*x^2 - 22820*x - 2630, 1)
 

Normalized defining polynomial

\( x^{14} - 7 x^{13} + 35 x^{12} - 119 x^{11} + 175 x^{10} - 119 x^{9} + 357 x^{8} - 3403 x^{7} - 1372 x^{6} + 34706 x^{5} + 4942 x^{4} - 72338 x^{3} - 68124 x^{2} - 22820 x - 2630 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(29902801024066582080000000=2^{12}\cdot 3^{9}\cdot 5^{7}\cdot 7^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $66.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{8586413914571609105360388198} a^{13} + \frac{521489640754979656322933593}{2862137971523869701786796066} a^{12} + \frac{1998587260965717701683944149}{8586413914571609105360388198} a^{11} - \frac{191696959743776987211252896}{1431068985761934850893398033} a^{10} + \frac{2788532516774083312065318517}{8586413914571609105360388198} a^{9} + \frac{3165292276117590696658694045}{8586413914571609105360388198} a^{8} + \frac{2574792106185528539555719811}{8586413914571609105360388198} a^{7} - \frac{423023121261285983192504518}{4293206957285804552680194099} a^{6} + \frac{561328703486267929969795633}{1431068985761934850893398033} a^{5} + \frac{1377687476823862123957637233}{4293206957285804552680194099} a^{4} + \frac{266213376632765519272532168}{1431068985761934850893398033} a^{3} - \frac{1538331275074436507695658578}{4293206957285804552680194099} a^{2} - \frac{1304798728960330833960559747}{4293206957285804552680194099} a + \frac{168350888612459310619711078}{4293206957285804552680194099}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 84748711.6462 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T40:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2688
The 20 conjugacy class representatives for 1/2[2^7]F_42(7)
Character table for 1/2[2^7]F_42(7)

Intermediate fields

7.7.177885288000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 16 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.12.9.2$x^{12} - 9 x^{4} + 27$$4$$3$$9$$D_4 \times C_3$$[\ ]_{4}^{6}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
7Data not computed