Normalized defining polynomial
\( x^{14} - 6 x^{13} - 9 x^{12} + 404 x^{11} + 756 x^{10} - 744 x^{9} - 31226 x^{8} - 178104 x^{7} - 129651 x^{6} + 191106 x^{5} - 447273 x^{4} - 2482812 x^{3} + 1375542 x^{2} + 2905308 x - 1000188 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27210071794374475776000000000000=2^{28}\cdot 3^{14}\cdot 5^{12}\cdot 7^{2}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $175.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{5} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3}$, $\frac{1}{36} a^{10} - \frac{1}{12} a^{8} + \frac{2}{9} a^{7} + \frac{1}{12} a^{6} + \frac{1}{6} a^{5} + \frac{13}{36} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{108} a^{11} - \frac{1}{12} a^{9} + \frac{2}{27} a^{8} + \frac{7}{36} a^{7} - \frac{2}{9} a^{6} - \frac{5}{108} a^{5} - \frac{7}{18} a^{4} + \frac{4}{9} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{22680} a^{12} - \frac{2}{945} a^{11} + \frac{17}{1260} a^{10} + \frac{29}{567} a^{9} - \frac{7}{108} a^{8} + \frac{179}{945} a^{7} - \frac{467}{5670} a^{6} - \frac{59}{630} a^{5} + \frac{479}{1512} a^{4} - \frac{5}{63} a^{3} - \frac{331}{1260} a^{2} + \frac{13}{210} a - \frac{1}{10}$, $\frac{1}{950225502892867563488596606022266800} a^{13} - \frac{399963964688194192547720149609}{316741834297622521162865535340755600} a^{12} + \frac{45909931304557176789988473359021}{52790305716270420193810922556792600} a^{11} - \frac{3057980302827025524670348044874247}{475112751446433781744298303011133400} a^{10} - \frac{6232590739640965763283759765137}{129282381345968375984843075649288} a^{9} - \frac{9807233805154252506079739257139299}{158370917148811260581432767670377800} a^{8} - \frac{8902638884241778141358404097595169}{118778187861608445436074575752783350} a^{7} + \frac{101318381658890997383785599908789}{13197576429067605048452730639198150} a^{6} + \frac{56570405584724090496799470374865607}{316741834297622521162865535340755600} a^{5} - \frac{7337042126917768388255428403993947}{21116122286508168077524369022717040} a^{4} + \frac{21938096611008338640690118506114719}{52790305716270420193810922556792600} a^{3} + \frac{7171835192622285681801380762127089}{17596768572090140064603640852264200} a^{2} - \frac{27729001309925949785537299847393}{69828446714643412954776352588350} a - \frac{9814072517801555214911727022421}{19950984775612403701364672168100}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1461564547240 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 43589145600 |
| The 72 conjugacy class representatives for A14 are not computed |
| Character table for A14 is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.13.0.1}{13} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.13.0.1}{13} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.8.22.95 | $x^{8} + 184 x^{4} + 400$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.6.11.6 | $x^{6} + 6 x^{3} + 15$ | $6$ | $1$ | $11$ | $S_3^2$ | $[2, 5/2]_{2}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.10.10.6 | $x^{10} + 10 x^{6} + 10 x^{5} + 75 x^{2} + 50 x + 25$ | $5$ | $2$ | $10$ | $C_5^2 : C_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $11$ | 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |