Normalized defining polynomial
\( x^{14} - 28 x^{12} + 168 x^{10} + 504 x^{8} - 3024 x^{6} - 6048 x^{4} - 9072 x^{2} - 36288 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(169318941227702858004037632=2^{26}\cdot 3^{12}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{6} - \frac{1}{12} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{7} - \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{144} a^{8} - \frac{1}{36} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{144} a^{9} + \frac{1}{72} a^{7} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{144} a^{10} - \frac{1}{36} a^{6} - \frac{1}{12} a^{4}$, $\frac{1}{864} a^{11} + \frac{1}{432} a^{9} + \frac{1}{72} a^{7} - \frac{1}{24} a^{5} - \frac{1}{12} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{5921856} a^{12} + \frac{373}{2960928} a^{10} - \frac{1}{288} a^{9} + \frac{17}{54832} a^{8} + \frac{1}{72} a^{7} + \frac{12227}{493488} a^{6} - \frac{1}{24} a^{5} + \frac{7675}{82248} a^{4} - \frac{5}{24} a^{3} + \frac{1628}{3427} a^{2} - \frac{1}{2} a + \frac{1501}{3427}$, $\frac{1}{5921856} a^{13} + \frac{373}{2960928} a^{11} - \frac{1}{288} a^{10} + \frac{17}{54832} a^{9} - \frac{8335}{493488} a^{7} + \frac{1}{72} a^{6} + \frac{821}{82248} a^{5} + \frac{1}{24} a^{4} - \frac{171}{6854} a^{3} + \frac{1501}{3427} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 554978941.697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for 2[1/2]S(7) |
| Character table for 2[1/2]S(7) |
Intermediate fields
| \(\Q(\sqrt{7}) \), 7.3.614771555328.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.3.614771555328.1 |
| Degree 21 sibling: | Deg 21 |
| Degree 30 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.12.24.392 | $x^{12} + 2 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} - 2 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 4 x + 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 7 | Data not computed | ||||||