Properties

Label 14.6.13100960042...2853.1
Degree $14$
Signature $[6, 4]$
Discriminant $7^{10}\cdot 173^{7}$
Root discriminant $52.80$
Ramified primes $7, 173$
Class number $2$
Class group $[2]$
Galois group 14T40

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2835, -7482, 2305, 7615, -5621, -2391, 1809, -209, 26, 288, -14, -38, -3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 - 3*x^12 - 38*x^11 - 14*x^10 + 288*x^9 + 26*x^8 - 209*x^7 + 1809*x^6 - 2391*x^5 - 5621*x^4 + 7615*x^3 + 2305*x^2 - 7482*x + 2835)
 
gp: K = bnfinit(x^14 - x^13 - 3*x^12 - 38*x^11 - 14*x^10 + 288*x^9 + 26*x^8 - 209*x^7 + 1809*x^6 - 2391*x^5 - 5621*x^4 + 7615*x^3 + 2305*x^2 - 7482*x + 2835, 1)
 

Normalized defining polynomial

\( x^{14} - x^{13} - 3 x^{12} - 38 x^{11} - 14 x^{10} + 288 x^{9} + 26 x^{8} - 209 x^{7} + 1809 x^{6} - 2391 x^{5} - 5621 x^{4} + 7615 x^{3} + 2305 x^{2} - 7482 x + 2835 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1310096004205025653972853=7^{10}\cdot 173^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 173$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{45022321924355172477684} a^{13} - \frac{856371596081090681849}{22511160962177586238842} a^{12} - \frac{1412482303395582872359}{15007440641451724159228} a^{11} + \frac{3273356050025748058501}{45022321924355172477684} a^{10} - \frac{913698866330870706527}{45022321924355172477684} a^{9} - \frac{2405219334745123314839}{15007440641451724159228} a^{8} + \frac{17503247248372064837879}{45022321924355172477684} a^{7} - \frac{2964053985187273492675}{22511160962177586238842} a^{6} - \frac{7243974263867902037577}{15007440641451724159228} a^{5} + \frac{231930231215086074947}{3751860160362931039807} a^{4} + \frac{6708500185594460860819}{45022321924355172477684} a^{3} - \frac{3474077656691739184133}{11255580481088793119421} a^{2} + \frac{13720957185073540983217}{45022321924355172477684} a - \frac{6006798168628009948811}{15007440641451724159228}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14978537.0829 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T40:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2688
The 20 conjugacy class representatives for 1/2[2^7]F_42(7)
Character table for 1/2[2^7]F_42(7)

Intermediate fields

7.7.12431698517.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 16 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.12.10.5$x^{12} + 56 x^{6} + 1323$$6$$2$$10$$C_{12}$$[\ ]_{6}^{2}$
173Data not computed