Properties

Label 14.4.710...912.1
Degree $14$
Signature $[4, 5]$
Discriminant $-7.101\times 10^{18}$
Root discriminant $22.21$
Ramified primes $2, 7, 3967$
Class number $1$
Class group trivial
Galois group 14T51

Related objects

Downloads

Learn more

Show commands: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x^13 - 6*x^12 - 8*x^11 - 10*x^10 + 4*x^9 + 4*x^8 + 18*x^7 + 4*x^6 + 4*x^5 - 10*x^4 - 8*x^3 - 6*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^14 - 2*x^13 - 6*x^12 - 8*x^11 - 10*x^10 + 4*x^9 + 4*x^8 + 18*x^7 + 4*x^6 + 4*x^5 - 10*x^4 - 8*x^3 - 6*x^2 - 2*x + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, -6, -8, -10, 4, 4, 18, 4, 4, -10, -8, -6, -2, 1]);
 

\(x^{14} - 2 x^{13} - 6 x^{12} - 8 x^{11} - 10 x^{10} + 4 x^{9} + 4 x^{8} + 18 x^{7} + 4 x^{6} + 4 x^{5} - 10 x^{4} - 8 x^{3} - 6 x^{2} - 2 x + 1\)  Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[4, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(-7100791977400102912\)\(\medspace = -\,2^{12}\cdot 7\cdot 3967^{4}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $22.21$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $2, 7, 3967$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $2$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{3}{7} a^{9} - \frac{3}{7} a^{8} + \frac{2}{7} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{11} + \frac{2}{7} a^{9} - \frac{3}{7} a^{8} + \frac{2}{7} a^{7} - \frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{2}{7} a^{7} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{56} a^{13} + \frac{3}{56} a^{12} + \frac{1}{56} a^{11} - \frac{3}{56} a^{10} + \frac{15}{56} a^{9} - \frac{9}{56} a^{8} - \frac{1}{56} a^{7} + \frac{3}{8} a^{6} - \frac{19}{56} a^{5} - \frac{27}{56} a^{4} - \frac{17}{56} a^{3} - \frac{3}{8} a^{2} + \frac{9}{56} a + \frac{11}{56}$  Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -1 \) (order $2$)  Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 33305.5237228 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{4}\cdot(2\pi)^{5}\cdot 33305.5237228 \cdot 1}{2\sqrt{7100791977400102912}}\approx 0.979156702504$

Galois group

14T51:

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A non-solvable group of order 21504
The 48 conjugacy class representatives for [2^7]L(7)=2wrL(7)
Character table for [2^7]L(7)=2wrL(7) is not computed

Intermediate fields

7.7.1007173696.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.14.0.1}{14} }$ ${\href{/padicField/5.14.0.1}{14} }$ R ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.14.0.1}{14} }$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.7.0.1}{7} }^{2}$ ${\href{/padicField/29.7.0.1}{7} }^{2}$ ${\href{/padicField/31.14.0.1}{14} }$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.3.0.1}{3} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.6.6.1$x^{6} + x^{2} - 1$$2$$3$$6$$A_4$$[2, 2]^{3}$
2.6.6.1$x^{6} + x^{2} - 1$$2$$3$$6$$A_4$$[2, 2]^{3}$
$7$7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
$3967$Data not computed