Normalized defining polynomial
\( x^{14} - 5 x^{13} + 18 x^{12} - 35 x^{11} + 43 x^{10} - 23 x^{9} - 3 x^{8} - 65 x^{7} + 163 x^{6} + \cdots - 13 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[2, 6]$ |
| |
| Discriminant: |
\(965463713906498833\)
\(\medspace = 13^{7}\cdot 109^{5}\)
|
| |
| Root discriminant: | \(19.26\) |
| |
| Galois root discriminant: | $13^{3/4}109^{1/2}\approx 71.4777318983505$ | ||
| Ramified primes: |
\(13\), \(109\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{1417}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{238359580461007}a^{13}+\frac{67452008019111}{238359580461007}a^{12}-\frac{235903118738}{238359580461007}a^{11}-\frac{90079481428426}{238359580461007}a^{10}-\frac{50025093285771}{238359580461007}a^{9}+\frac{86018523961010}{238359580461007}a^{8}+\frac{3701225049714}{238359580461007}a^{7}-\frac{83210936486800}{238359580461007}a^{6}+\frac{110133901322719}{238359580461007}a^{5}-\frac{72670433684315}{238359580461007}a^{4}+\frac{13898741506216}{238359580461007}a^{3}-\frac{88859828916603}{238359580461007}a^{2}+\frac{103768400445579}{238359580461007}a+\frac{85802307008269}{238359580461007}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{746252748966}{238359580461007}a^{13}-\frac{5214141004098}{238359580461007}a^{12}+\frac{22357610543750}{238359580461007}a^{11}-\frac{58737980091251}{238359580461007}a^{10}+\frac{102487986452145}{238359580461007}a^{9}-\frac{102156599992666}{238359580461007}a^{8}+\frac{38743726466366}{238359580461007}a^{7}-\frac{11216112398086}{238359580461007}a^{6}+\frac{203571878759117}{238359580461007}a^{5}-\frac{463442241195441}{238359580461007}a^{4}+\frac{340272383568515}{238359580461007}a^{3}+\frac{179954030784882}{238359580461007}a^{2}-\frac{633738282965489}{238359580461007}a+\frac{298538816624038}{238359580461007}$, $\frac{1613096339700}{238359580461007}a^{13}-\frac{9375140481580}{238359580461007}a^{12}+\frac{36074662484199}{238359580461007}a^{11}-\frac{83801106065312}{238359580461007}a^{10}+\frac{127023514544906}{238359580461007}a^{9}-\frac{117708279592227}{238359580461007}a^{8}+\frac{39804057724684}{238359580461007}a^{7}-\frac{101730011322516}{238359580461007}a^{6}+\frac{343416769043173}{238359580461007}a^{5}-\frac{589658399522470}{238359580461007}a^{4}+\frac{425010058326966}{238359580461007}a^{3}+\frac{284563124036155}{238359580461007}a^{2}-\frac{588726128103061}{238359580461007}a+\frac{205615427619208}{238359580461007}$, $\frac{1589783175325}{238359580461007}a^{13}-\frac{6884210118230}{238359580461007}a^{12}+\frac{25612547866607}{238359580461007}a^{11}-\frac{47225704506324}{238359580461007}a^{10}+\frac{63839034752406}{238359580461007}a^{9}-\frac{38118509123200}{238359580461007}a^{8}-\frac{15057189927768}{238359580461007}a^{7}-\frac{58981481323196}{238359580461007}a^{6}+\frac{151045325911951}{238359580461007}a^{5}-\frac{307445930218327}{238359580461007}a^{4}+\frac{184503240845407}{238359580461007}a^{3}+\frac{474141108310848}{238359580461007}a^{2}-\frac{486753314351291}{238359580461007}a+\frac{44825167109834}{238359580461007}$, $\frac{480228459158}{238359580461007}a^{13}-\frac{3219408117729}{238359580461007}a^{12}+\frac{12855259022986}{238359580461007}a^{11}-\frac{32074365650702}{238359580461007}a^{10}+\frac{46501586375681}{238359580461007}a^{9}-\frac{37255669341479}{238359580461007}a^{8}-\frac{13212941625245}{238359580461007}a^{7}+\frac{2073338289007}{238359580461007}a^{6}+\frac{129088587996058}{238359580461007}a^{5}-\frac{204104317914736}{238359580461007}a^{4}+\frac{161286764106365}{238359580461007}a^{3}+\frac{224690279394069}{238359580461007}a^{2}-\frac{314351293901970}{238359580461007}a+\frac{129492276831878}{238359580461007}$, $\frac{5471001514106}{238359580461007}a^{13}-\frac{20695437960298}{238359580461007}a^{12}+\frac{72340014322968}{238359580461007}a^{11}-\frac{99194747593219}{238359580461007}a^{10}+\frac{96313786388260}{238359580461007}a^{9}+\frac{27966909863832}{238359580461007}a^{8}-\frac{57288013712321}{238359580461007}a^{7}-\frac{338375572836108}{238359580461007}a^{6}+\frac{360043670505324}{238359580461007}a^{5}-\frac{337639038397111}{238359580461007}a^{4}-\frac{474826721455489}{238359580461007}a^{3}+\frac{738614403101021}{238359580461007}a^{2}-\frac{451916597013105}{238359580461007}a-\frac{32278893420379}{238359580461007}$, $\frac{877657273268}{238359580461007}a^{13}-\frac{4489969346389}{238359580461007}a^{12}+\frac{15296820774037}{238359580461007}a^{11}-\frac{26010822377680}{238359580461007}a^{10}+\frac{19607545330343}{238359580461007}a^{9}+\frac{9915901205913}{238359580461007}a^{8}-\frac{18800341344293}{238359580461007}a^{7}-\frac{86798315603443}{238359580461007}a^{6}+\frac{159934561150257}{238359580461007}a^{5}-\frac{3209010500241}{238359580461007}a^{4}-\frac{125098357043223}{238359580461007}a^{3}+\frac{218082417327471}{238359580461007}a^{2}-\frac{45024766510003}{238359580461007}a-\frac{11220902965098}{238359580461007}$, $\frac{4429868386028}{238359580461007}a^{13}-\frac{22516045126275}{238359580461007}a^{12}+\frac{82847072198857}{238359580461007}a^{11}-\frac{169850039805798}{238359580461007}a^{10}+\frac{235096209039355}{238359580461007}a^{9}-\frac{190750770937278}{238359580461007}a^{8}+\frac{105283509023056}{238359580461007}a^{7}-\frac{391242329829080}{238359580461007}a^{6}+\frac{836977918731997}{238359580461007}a^{5}-\frac{10\cdots 03}{238359580461007}a^{4}+\frac{511029674797426}{238359580461007}a^{3}+\frac{425201833145661}{238359580461007}a^{2}-\frac{774846196131562}{238359580461007}a+\frac{49045166019413}{238359580461007}$
|
| |
| Regulator: | \( 1288.44929096 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 1288.44929096 \cdot 1}{2\cdot\sqrt{965463713906498833}}\cr\approx \mathstrut & 0.161364708858 \end{aligned}\]
Galois group
$C_2^4.\PSL(2,7)$ (as 14T42):
| A non-solvable group of order 2688 |
| The 22 conjugacy class representatives for $C_2^4.\PSL(2,7)$ |
| Character table for $C_2^4.\PSL(2,7)$ |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }^{2}$ | ${\href{/padicField/3.7.0.1}{7} }^{2}$ | ${\href{/padicField/5.14.0.1}{14} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.7.0.1}{7} }^{2}$ | ${\href{/padicField/47.7.0.1}{7} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(13\)
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 13.4.1.0a1.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 13.2.4.6a1.4 | $x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24216 x^{4} + 14400 x^{3} + 3488 x^{2} + 540 x + 159$ | $4$ | $2$ | $6$ | $C_8$ | $$[\ ]_{4}^{2}$$ | |
|
\(109\)
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{109}$ | $x + 103$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 109.2.1.0a1.1 | $x^{2} + 108 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 109.1.2.1a1.1 | $x^{2} + 109$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 109.2.2.2a1.2 | $x^{4} + 216 x^{3} + 11676 x^{2} + 1296 x + 145$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |