Properties

Label 14.2.95269346856...3264.1
Degree $14$
Signature $[2, 6]$
Discriminant $2^{27}\cdot 3^{12}\cdot 7^{14}\cdot 11^{12}\cdot 13^{7}$
Root discriminant $1924.03$
Ramified primes $2, 3, 7, 11, 13$
Class number $840$ (GRH)
Class group $[2, 2, 210]$ (GRH)
Galois group $F_7 \times C_2$ (as 14T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8031792752, -32480448, 2162410432, -6246240, -249508896, -144144, 15994160, -264, -615160, 0, 14196, 0, -182, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 182*x^12 + 14196*x^10 - 615160*x^8 - 264*x^7 + 15994160*x^6 - 144144*x^5 - 249508896*x^4 - 6246240*x^3 + 2162410432*x^2 - 32480448*x - 8031792752)
 
gp: K = bnfinit(x^14 - 182*x^12 + 14196*x^10 - 615160*x^8 - 264*x^7 + 15994160*x^6 - 144144*x^5 - 249508896*x^4 - 6246240*x^3 + 2162410432*x^2 - 32480448*x - 8031792752, 1)
 

Normalized defining polynomial

\( x^{14} - 182 x^{12} + 14196 x^{10} - 615160 x^{8} - 264 x^{7} + 15994160 x^{6} - 144144 x^{5} - 249508896 x^{4} - 6246240 x^{3} + 2162410432 x^{2} - 32480448 x - 8031792752 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(9526934685633986238015184265652194712710283264=2^{27}\cdot 3^{12}\cdot 7^{14}\cdot 11^{12}\cdot 13^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1924.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{4450725958967349844188295883727564272056} a^{13} + \frac{96823837764800375204466830036462006941}{2225362979483674922094147941863782136028} a^{12} - \frac{24663570116655229411005756686171750877}{2225362979483674922094147941863782136028} a^{11} + \frac{5904884552855356414933860677862871888}{556340744870918730523536985465945534007} a^{10} + \frac{49272627491545079973017071979718987166}{556340744870918730523536985465945534007} a^{9} + \frac{30924116490086397312933033988023438396}{556340744870918730523536985465945534007} a^{8} - \frac{7249301641409151354383309071187414438}{556340744870918730523536985465945534007} a^{7} + \frac{111660348009637993078891324895322467097}{1112681489741837461047073970931891068014} a^{6} - \frac{59473731834650501390603195772991381493}{1112681489741837461047073970931891068014} a^{5} + \frac{86272989114728684050225335867935195513}{1112681489741837461047073970931891068014} a^{4} + \frac{31569102024619248699089134596026300472}{556340744870918730523536985465945534007} a^{3} + \frac{227162362872859282473565337651183837351}{556340744870918730523536985465945534007} a^{2} - \frac{193991348846274062128394716248488273205}{556340744870918730523536985465945534007} a - \frac{43439917219116002133542217209576371781}{556340744870918730523536985465945534007}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{210}$, which has order $840$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 839976945753529.6 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times F_7$ (as 14T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 84
The 14 conjugacy class representatives for $F_7 \times C_2$
Character table for $F_7 \times C_2$

Intermediate fields

\(\Q(\sqrt{26}) \), 7.1.68069081958026688.23

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ R R R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.14.0.1}{14} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/43.14.0.1}{14} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.27.13$x^{14} - 4 x^{12} + 8 x^{11} - 6 x^{10} - 4 x^{9} - 6 x^{8} + 4 x^{7} + 6 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 6$$14$$1$$27$$(C_7:C_3) \times C_2$$[3]_{7}^{3}$
$3$3.14.12.1$x^{14} - 3 x^{7} + 18$$7$$2$$12$$F_7$$[\ ]_{7}^{6}$
$7$7.14.14.21$x^{14} + 28 x^{12} + 42 x^{11} + 42 x^{9} + 21 x^{8} + 29 x^{7} + 21 x^{6} + 35 x^{5} + 7 x^{4} + 14 x^{3} + 28 x^{2} + 42 x + 45$$7$$2$$14$$F_7 \times C_2$$[7/6]_{6}^{2}$
$11$11.7.6.1$x^{7} - 11$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
11.7.6.1$x^{7} - 11$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$