Properties

Label 14.2.94724481953125.1
Degree $14$
Signature $[2, 6]$
Discriminant $9.472\times 10^{13}$
Root discriminant \(9.96\)
Ramified primes $5,199,6092831$
Class number $1$
Class group trivial
Galois group $S_7\wr C_2$ (as 14T61)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 - 2*x^12 + 5*x^11 + 2*x^10 - 9*x^9 + 2*x^8 + 10*x^7 - 6*x^6 - 6*x^5 + 7*x^4 + x^3 - 4*x^2 + 1)
 
gp: K = bnfinit(y^14 - y^13 - 2*y^12 + 5*y^11 + 2*y^10 - 9*y^9 + 2*y^8 + 10*y^7 - 6*y^6 - 6*y^5 + 7*y^4 + y^3 - 4*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - x^13 - 2*x^12 + 5*x^11 + 2*x^10 - 9*x^9 + 2*x^8 + 10*x^7 - 6*x^6 - 6*x^5 + 7*x^4 + x^3 - 4*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - x^13 - 2*x^12 + 5*x^11 + 2*x^10 - 9*x^9 + 2*x^8 + 10*x^7 - 6*x^6 - 6*x^5 + 7*x^4 + x^3 - 4*x^2 + 1)
 

\( x^{14} - x^{13} - 2 x^{12} + 5 x^{11} + 2 x^{10} - 9 x^{9} + 2 x^{8} + 10 x^{7} - 6 x^{6} - 6 x^{5} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(94724481953125\) \(\medspace = 5^{7}\cdot 199\cdot 6092831\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(9.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}199^{1/2}6092831^{1/2}\approx 77861.20243741423$
Ramified primes:   \(5\), \(199\), \(6092831\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{6062366845}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $9a^{13}-3a^{12}-19a^{11}+32a^{10}+37a^{9}-52a^{8}-13a^{7}+74a^{6}-4a^{5}-47a^{4}+27a^{3}+22a^{2}-15a-9$, $2a^{13}+a^{12}-5a^{11}+4a^{10}+15a^{9}-7a^{8}-13a^{7}+19a^{6}+11a^{5}-17a^{4}+a^{3}+13a^{2}-3a-5$, $7a^{13}-a^{12}-16a^{11}+23a^{10}+34a^{9}-39a^{8}-17a^{7}+60a^{6}+2a^{5}-41a^{4}+20a^{3}+21a^{2}-13a-8$, $a^{13}-3a^{11}+4a^{10}+6a^{9}-8a^{8}-3a^{7}+13a^{6}-a^{5}-9a^{4}+6a^{3}+4a^{2}-4a$, $8a^{13}-2a^{12}-17a^{11}+26a^{10}+36a^{9}-42a^{8}-19a^{7}+64a^{6}+6a^{5}-44a^{4}+18a^{3}+25a^{2}-12a-11$, $7a^{13}-2a^{12}-15a^{11}+24a^{10}+30a^{9}-39a^{8}-13a^{7}+57a^{6}-a^{5}-37a^{4}+20a^{3}+18a^{2}-12a-7$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13.5893961295 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 13.5893961295 \cdot 1}{2\cdot\sqrt{94724481953125}}\cr\approx \mathstrut & 0.171821792284 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 - 2*x^12 + 5*x^11 + 2*x^10 - 9*x^9 + 2*x^8 + 10*x^7 - 6*x^6 - 6*x^5 + 7*x^4 + x^3 - 4*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - x^13 - 2*x^12 + 5*x^11 + 2*x^10 - 9*x^9 + 2*x^8 + 10*x^7 - 6*x^6 - 6*x^5 + 7*x^4 + x^3 - 4*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 - x^13 - 2*x^12 + 5*x^11 + 2*x^10 - 9*x^9 + 2*x^8 + 10*x^7 - 6*x^6 - 6*x^5 + 7*x^4 + x^3 - 4*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - x^13 - 2*x^12 + 5*x^11 + 2*x^10 - 9*x^9 + 2*x^8 + 10*x^7 - 6*x^6 - 6*x^5 + 7*x^4 + x^3 - 4*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_7\wr C_2$ (as 14T61):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 50803200
The 135 conjugacy class representatives for $S_7\wr C_2$
Character table for $S_7\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 28 siblings: data not computed
Degree 42 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.14.0.1}{14} }$ ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.6.0.1}{6} }$ R ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.14.0.1}{14} }$ ${\href{/padicField/17.14.0.1}{14} }$ ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.6.3.1$x^{6} + 60 x^{5} + 1221 x^{4} + 8846 x^{3} + 9864 x^{2} + 29208 x + 29309$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(199\) Copy content Toggle raw display $\Q_{199}$$x + 196$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 196$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 196$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 196$$1$$1$$0$Trivial$[\ ]$
199.2.0.1$x^{2} + 193 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.1.2$x^{2} + 199$$2$$1$$1$$C_2$$[\ ]_{2}$
199.6.0.1$x^{6} + 90 x^{3} + 58 x^{2} + 79 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
\(6092831\) Copy content Toggle raw display $\Q_{6092831}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{6092831}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{6092831}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$