Normalized defining polynomial
\( x^{14} - 63 x^{12} - 9555 x^{11} + 118671 x^{10} - 708246 x^{9} - 17922660 x^{8} + 859373823 x^{7} + 2085856500 x^{6} - 117366985106 x^{5} - 335941176396 x^{4} + 4638317668005 x^{3} + 17926524826973 x^{2} + 7429846568445 x + 91264986397629 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(869651227673543607965251034000845898902500000000=2^{8}\cdot 3^{16}\cdot 5^{10}\cdot 7^{24}\cdot 59^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2656.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{25} a^{8} - \frac{2}{25} a^{7} + \frac{1}{25} a^{6} - \frac{2}{25} a^{5} + \frac{2}{25} a^{3} + \frac{6}{25} a^{2} - \frac{3}{25} a - \frac{4}{25}$, $\frac{1}{75} a^{9} - \frac{1}{25} a^{7} + \frac{1}{15} a^{6} + \frac{16}{75} a^{5} - \frac{6}{25} a^{4} + \frac{1}{3} a^{3} + \frac{4}{75} a^{2} + \frac{2}{15} a + \frac{4}{25}$, $\frac{1}{375} a^{10} + \frac{2}{375} a^{9} - \frac{1}{125} a^{8} - \frac{31}{375} a^{7} - \frac{4}{375} a^{6} - \frac{181}{375} a^{5} + \frac{139}{375} a^{4} + \frac{43}{125} a^{3} - \frac{39}{125} a^{2} - \frac{28}{375} a - \frac{47}{125}$, $\frac{1}{375} a^{11} - \frac{2}{375} a^{9} + \frac{1}{75} a^{8} - \frac{17}{375} a^{7} + \frac{32}{375} a^{6} - \frac{4}{375} a^{5} - \frac{89}{375} a^{4} - \frac{23}{75} a^{3} - \frac{119}{375} a^{2} + \frac{4}{15} a + \frac{24}{125}$, $\frac{1}{1875} a^{12} + \frac{1}{1875} a^{11} - \frac{1}{1875} a^{10} + \frac{1}{375} a^{9} + \frac{1}{125} a^{8} - \frac{1}{1875} a^{7} + \frac{18}{625} a^{6} + \frac{791}{1875} a^{5} + \frac{122}{375} a^{4} + \frac{7}{125} a^{3} - \frac{481}{1875} a^{2} + \frac{93}{625} a + \frac{162}{625}$, $\frac{1}{234898238096534679822440775066866021285729703515922573715965454612786875} a^{13} - \frac{9993754774211978847169335276287020242264819300989918991375516961331}{78299412698844893274146925022288673761909901171974191238655151537595625} a^{12} + \frac{47575017912185813099939649775624503414081754499019637982528132566726}{46979647619306935964488155013373204257145940703184514743193090922557375} a^{11} - \frac{179956381195886291599382627888508350478822165848266336144926835816976}{234898238096534679822440775066866021285729703515922573715965454612786875} a^{10} - \frac{140761764187226306798884230287023209221932995535020263241461579787806}{46979647619306935964488155013373204257145940703184514743193090922557375} a^{9} - \frac{146634886281267487919880780817247458654384681167340020378709761243836}{234898238096534679822440775066866021285729703515922573715965454612786875} a^{8} - \frac{650753664209988462732206148893478606815436935712001570753662023871902}{234898238096534679822440775066866021285729703515922573715965454612786875} a^{7} - \frac{2414339634959327622536955290826298015253402967205433805819540791443217}{46979647619306935964488155013373204257145940703184514743193090922557375} a^{6} - \frac{79805255722008645327225612713182749584790175087998036769333595138245469}{234898238096534679822440775066866021285729703515922573715965454612786875} a^{5} + \frac{3249459251379810058894541620121621610476820370119188211805110496829648}{46979647619306935964488155013373204257145940703184514743193090922557375} a^{4} + \frac{46557129524116651240435011998433159504654742066255621648633786238499674}{234898238096534679822440775066866021285729703515922573715965454612786875} a^{3} + \frac{26387927066865851410479606251072994501331075081486214381753606759551581}{78299412698844893274146925022288673761909901171974191238655151537595625} a^{2} - \frac{2583418474782054465936871605370038693975009594722214620275608199916773}{46979647619306935964488155013373204257145940703184514743193090922557375} a - \frac{18349020425247369086084667363817070770538932199420921941504036490791153}{78299412698844893274146925022288673761909901171974191238655151537595625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6801116114790000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 10 conjugacy class representatives for [1/6_-.F_42(7)^2]2_2 |
| Character table for [1/6_-.F_42(7)^2]2_2 |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.12.16.30 | $x^{12} + 93 x^{11} + 351 x^{10} + 3 x^{9} + 126 x^{8} - 297 x^{7} + 171 x^{6} + 243 x^{5} - 324 x^{4} - 54 x^{3} + 162 x^{2} - 243 x + 324$ | $3$ | $4$ | $16$ | $C_3 : C_4$ | $[2]^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 7 | Data not computed | ||||||
| 59 | Data not computed | ||||||