Normalized defining polynomial
\( x^{14} - 6 x^{13} + 13 x^{12} - 338 x^{9} + 845 x^{8} + 17576 x^{4} + 70304 x + 35152 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(841964290822597536686373339136=2^{18}\cdot 13^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $137.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6} - \frac{6}{13} a^{5}$, $\frac{1}{39} a^{7} - \frac{10}{39} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{78} a^{8} - \frac{1}{78} a^{6} + \frac{4}{13} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{156} a^{9} - \frac{1}{156} a^{7} - \frac{1}{26} a^{6} - \frac{1}{78} a^{5} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{16224} a^{10} - \frac{1}{2704} a^{9} + \frac{1}{1248} a^{8} - \frac{1}{156} a^{7} - \frac{7}{312} a^{6} - \frac{253}{624} a^{5} + \frac{25}{96} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a + \frac{11}{24}$, $\frac{1}{16224} a^{11} - \frac{23}{16224} a^{9} - \frac{1}{624} a^{8} - \frac{1}{104} a^{7} - \frac{1}{624} a^{6} + \frac{35}{416} a^{5} + \frac{11}{48} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{5}{24} a + \frac{1}{12}$, $\frac{1}{32448} a^{12} - \frac{1}{32448} a^{10} + \frac{25}{16224} a^{9} + \frac{5}{1248} a^{8} + \frac{5}{416} a^{7} + \frac{5}{192} a^{6} + \frac{161}{1248} a^{5} - \frac{13}{96} a^{4} - \frac{1}{6} a^{3} - \frac{5}{48} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{20182656} a^{13} - \frac{203}{6727552} a^{11} + \frac{1}{258752} a^{10} + \frac{2255}{3363776} a^{9} + \frac{239}{258752} a^{8} + \frac{2475}{517504} a^{7} - \frac{625}{19904} a^{6} - \frac{15941}{776256} a^{5} - \frac{3475}{9952} a^{4} + \frac{14915}{29856} a^{3} - \frac{1283}{14928} a^{2} - \frac{6143}{14928} a + \frac{915}{2488}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18415956755.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,13)$ (as 14T30):
| A non-solvable group of order 1092 |
| The 9 conjugacy class representatives for $\PSL(2,13)$ |
| Character table for $\PSL(2,13)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.13.0.1}{13} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.13.0.1}{13} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.13.0.1}{13} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.13.22.2 | $x^{13} + 39 x^{10} + 13$ | $13$ | $1$ | $22$ | $C_{13}:C_6$ | $[11/6]_{6}$ |