Normalized defining polynomial
\( x^{14} - 870x^{7} - 900 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[2, 6]$ |
| |
| Discriminant: |
\(750594644019045000000000000\)
\(\medspace = 2^{12}\cdot 3^{12}\cdot 5^{13}\cdot 7^{10}\)
|
| |
| Root discriminant: | \(83.11\) |
| |
| Galois root discriminant: | $2^{6/7}3^{6/7}5^{13/14}7^{5/6}\approx 104.78008059808623$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{390}a^{7}+\frac{5}{13}$, $\frac{1}{390}a^{8}+\frac{5}{13}a$, $\frac{1}{390}a^{9}+\frac{5}{13}a^{2}$, $\frac{1}{390}a^{10}+\frac{5}{13}a^{3}$, $\frac{1}{1950}a^{11}+\frac{18}{65}a^{4}$, $\frac{1}{13650}a^{12}+\frac{1}{6825}a^{11}+\frac{1}{910}a^{10}+\frac{1}{1365}a^{9}+\frac{1}{1365}a^{8}-\frac{1}{1365}a^{7}-\frac{2}{7}a^{6}+\frac{83}{455}a^{5}+\frac{101}{455}a^{4}+\frac{41}{91}a^{3}-\frac{29}{91}a^{2}+\frac{36}{91}a-\frac{23}{91}$, $\frac{1}{13650}a^{13}-\frac{1}{4550}a^{11}+\frac{1}{910}a^{10}-\frac{1}{1365}a^{9}+\frac{1}{2730}a^{8}+\frac{1}{2730}a^{7}-\frac{16}{65}a^{6}-\frac{1}{7}a^{5}+\frac{206}{455}a^{4}+\frac{15}{91}a^{3}+\frac{3}{91}a^{2}+\frac{31}{91}a+\frac{18}{91}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{390}a^{7}-\frac{8}{13}$, $\frac{1}{195}a^{13}+\frac{2}{2275}a^{12}-\frac{67}{13650}a^{11}+\frac{11}{1365}a^{10}-\frac{1}{70}a^{9}+\frac{59}{2730}a^{8}+\frac{11}{2730}a^{7}-\frac{424}{91}a^{6}+\frac{86}{455}a^{5}+\frac{484}{455}a^{4}+\frac{149}{91}a^{3}-\frac{44}{7}a^{2}+\frac{880}{91}a-\frac{829}{91}$, $\frac{23}{2275}a^{13}-\frac{8}{91}a^{12}-\frac{2}{75}a^{11}+\frac{223}{2730}a^{10}+\frac{257}{2730}a^{9}+\frac{101}{1365}a^{8}+\frac{487}{2730}a^{7}-\frac{3691}{455}a^{6}+\frac{1019}{13}a^{5}+\frac{981}{35}a^{4}-\frac{5333}{91}a^{3}-\frac{4448}{91}a^{2}+\frac{2063}{91}a+\frac{6634}{91}$, $\frac{22}{325}a^{13}+\frac{37}{910}a^{12}-\frac{24}{175}a^{11}+\frac{307}{2730}a^{10}-\frac{73}{2730}a^{9}-\frac{283}{2730}a^{8}+\frac{183}{910}a^{7}-\frac{26853}{455}a^{6}-\frac{3254}{91}a^{5}+\frac{4208}{35}a^{4}-\frac{8787}{91}a^{3}+\frac{1468}{91}a^{2}+\frac{8101}{91}a-\frac{11204}{91}$, $\frac{46}{2275}a^{13}-\frac{131}{2730}a^{12}-\frac{88}{2275}a^{11}+\frac{19}{546}a^{10}+\frac{23}{390}a^{9}-\frac{3}{70}a^{8}-\frac{183}{910}a^{7}-\frac{8097}{455}a^{6}+\frac{3830}{91}a^{5}+\frac{16496}{455}a^{4}-\frac{324}{13}a^{3}-\frac{4460}{91}a^{2}+\frac{23}{7}a+\frac{4717}{91}$, $\frac{1643}{13650}a^{13}+\frac{1426}{6825}a^{12}-\frac{68}{2275}a^{11}-\frac{209}{910}a^{10}-\frac{151}{2730}a^{9}+\frac{809}{2730}a^{8}-\frac{337}{2730}a^{7}-\frac{47906}{455}a^{6}-\frac{81654}{455}a^{5}+\frac{11896}{455}a^{4}+\frac{16599}{91}a^{3}+\frac{6200}{91}a^{2}-\frac{14493}{91}a-\frac{1901}{13}$, $\frac{108739}{4550}a^{13}+\frac{311462}{6825}a^{12}+\frac{57008}{975}a^{11}+\frac{163147}{2730}a^{10}+\frac{13462}{273}a^{9}+\frac{39493}{1365}a^{8}+\frac{2426}{1365}a^{7}-\frac{9471669}{455}a^{6}-\frac{2583434}{65}a^{5}-\frac{23174279}{455}a^{4}-\frac{4739698}{91}a^{3}-\frac{3902744}{91}a^{2}-\frac{2282004}{91}a-\frac{191657}{91}$
|
| |
| Regulator: | \( 145796753.1376601 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 145796753.1376601 \cdot 1}{2\cdot\sqrt{750594644019045000000000000}}\cr\approx \mathstrut & 0.654868842111669 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 7.1.12252303000000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{7}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.1.0.1}{1} }^{14}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.7.12a1.1 | $x^{14} + 7 x^{13} + 28 x^{12} + 77 x^{11} + 161 x^{10} + 266 x^{9} + 357 x^{8} + 393 x^{7} + 357 x^{6} + 266 x^{5} + 161 x^{4} + 77 x^{3} + 28 x^{2} + 7 x + 3$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $$[\ ]_{7}^{6}$$ |
|
\(3\)
| 3.2.7.12a1.1 | $x^{14} + 14 x^{13} + 98 x^{12} + 448 x^{11} + 1484 x^{10} + 3752 x^{9} + 7448 x^{8} + 11776 x^{7} + 14896 x^{6} + 15008 x^{5} + 11872 x^{4} + 7168 x^{3} + 3136 x^{2} + 896 x + 131$ | $7$ | $2$ | $12$ | $F_7$ | $$[\ ]_{7}^{6}$$ |
|
\(5\)
| 5.1.14.13a1.1 | $x^{14} + 5$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ |
|
\(7\)
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 7.2.6.10a1.2 | $x^{12} + 36 x^{11} + 558 x^{10} + 4860 x^{9} + 26055 x^{8} + 88776 x^{7} + 192996 x^{6} + 266328 x^{5} + 234495 x^{4} + 131220 x^{3} + 45198 x^{2} + 8748 x + 736$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ |