Properties

Label 14.2.493856488203125.1
Degree $14$
Signature $[2, 6]$
Discriminant $4.939\times 10^{14}$
Root discriminant \(11.21\)
Ramified primes $5,43$
Class number $1$
Class group trivial
Galois group $D_{14}$ (as 14T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x^13 + 6*x^11 - 3*x^10 - 8*x^9 + 13*x^8 + 4*x^7 - 16*x^6 + 7*x^5 + 13*x^4 - 11*x^3 - 4*x^2 + 6*x - 1)
 
gp: K = bnfinit(y^14 - 2*y^13 + 6*y^11 - 3*y^10 - 8*y^9 + 13*y^8 + 4*y^7 - 16*y^6 + 7*y^5 + 13*y^4 - 11*y^3 - 4*y^2 + 6*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 2*x^13 + 6*x^11 - 3*x^10 - 8*x^9 + 13*x^8 + 4*x^7 - 16*x^6 + 7*x^5 + 13*x^4 - 11*x^3 - 4*x^2 + 6*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 2*x^13 + 6*x^11 - 3*x^10 - 8*x^9 + 13*x^8 + 4*x^7 - 16*x^6 + 7*x^5 + 13*x^4 - 11*x^3 - 4*x^2 + 6*x - 1)
 

\( x^{14} - 2 x^{13} + 6 x^{11} - 3 x^{10} - 8 x^{9} + 13 x^{8} + 4 x^{7} - 16 x^{6} + 7 x^{5} + 13 x^{4} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $14$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(493856488203125\) \(\medspace = 5^{7}\cdot 43^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.21\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}43^{1/2}\approx 14.66287829861518$
Ramified primes:   \(5\), \(43\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}-\frac{1}{5}a^{9}+\frac{2}{5}a^{8}-\frac{1}{5}a^{7}+\frac{1}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}+\frac{1}{5}$, $\frac{1}{1235}a^{13}-\frac{84}{1235}a^{12}-\frac{28}{1235}a^{11}-\frac{83}{247}a^{10}+\frac{188}{1235}a^{9}+\frac{137}{1235}a^{8}-\frac{353}{1235}a^{7}+\frac{51}{1235}a^{6}+\frac{1}{1235}a^{5}-\frac{322}{1235}a^{4}-\frac{506}{1235}a^{3}-\frac{3}{247}a^{2}-\frac{9}{1235}a-\frac{491}{1235}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{496}{1235}a^{13}-\frac{909}{1235}a^{12}-\frac{303}{1235}a^{11}+\frac{575}{247}a^{10}-\frac{612}{1235}a^{9}-\frac{4913}{1235}a^{8}+\frac{5222}{1235}a^{7}+\frac{3066}{1235}a^{6}-\frac{8149}{1235}a^{5}+\frac{838}{1235}a^{4}+\frac{7139}{1235}a^{3}-\frac{994}{247}a^{2}-\frac{3229}{1235}a+\frac{2229}{1235}$, $\frac{417}{1235}a^{13}-\frac{448}{1235}a^{12}-\frac{561}{1235}a^{11}+\frac{463}{247}a^{10}+\frac{591}{1235}a^{9}-\frac{3386}{1235}a^{8}+\frac{3469}{1235}a^{7}+\frac{3977}{1235}a^{6}-\frac{4523}{1235}a^{5}+\frac{341}{1235}a^{4}+\frac{6358}{1235}a^{3}-\frac{510}{247}a^{2}-\frac{2518}{1235}a+\frac{1498}{1235}$, $\frac{263}{1235}a^{13}-\frac{109}{1235}a^{12}-\frac{448}{1235}a^{11}+\frac{1017}{1235}a^{10}+\frac{1526}{1235}a^{9}-\frac{1513}{1235}a^{8}+\frac{33}{1235}a^{7}+\frac{4521}{1235}a^{6}-\frac{231}{1235}a^{5}-\frac{2682}{1235}a^{4}+\frac{752}{247}a^{3}+\frac{693}{247}a^{2}-\frac{2367}{1235}a-\frac{188}{247}$, $\frac{131}{1235}a^{13}-\frac{383}{1235}a^{12}+\frac{284}{1235}a^{11}+\frac{469}{1235}a^{10}-\frac{813}{1235}a^{9}-\frac{331}{1235}a^{8}+\frac{1181}{1235}a^{7}-\frac{1223}{1235}a^{6}-\frac{857}{1235}a^{5}+\frac{796}{1235}a^{4}-\frac{265}{247}a^{3}-\frac{393}{247}a^{2}+\frac{56}{1235}a-\frac{119}{247}$, $\frac{47}{247}a^{13}-\frac{474}{1235}a^{12}-\frac{158}{1235}a^{11}+\frac{1769}{1235}a^{10}-\frac{1021}{1235}a^{9}-\frac{2138}{1235}a^{8}+\frac{2754}{1235}a^{7}+\frac{1611}{1235}a^{6}-\frac{4458}{1235}a^{5}+\frac{653}{1235}a^{4}+\frac{2861}{1235}a^{3}-\frac{458}{247}a^{2}-\frac{423}{247}a+\frac{1446}{1235}$, $\frac{54}{65}a^{13}-\frac{18}{13}a^{12}-\frac{6}{13}a^{11}+\frac{314}{65}a^{10}-\frac{79}{65}a^{9}-\frac{83}{13}a^{8}+\frac{542}{65}a^{7}+\frac{62}{13}a^{6}-\frac{674}{65}a^{5}+\frac{35}{13}a^{4}+\frac{587}{65}a^{3}-\frac{71}{13}a^{2}-\frac{226}{65}a+\frac{97}{65}$, $\frac{5}{247}a^{13}-\frac{124}{1235}a^{12}+\frac{782}{1235}a^{11}-\frac{1236}{1235}a^{10}+\frac{254}{1235}a^{9}+\frac{2437}{1235}a^{8}-\frac{921}{1235}a^{7}-\frac{2924}{1235}a^{6}+\frac{5212}{1235}a^{5}+\frac{348}{1235}a^{4}-\frac{3264}{1235}a^{3}+\frac{419}{247}a^{2}+\frac{449}{247}a-\frac{1654}{1235}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 39.9535247267 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 39.9535247267 \cdot 1}{2\cdot\sqrt{493856488203125}}\cr\approx \mathstrut & 0.221240139170 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - 2*x^13 + 6*x^11 - 3*x^10 - 8*x^9 + 13*x^8 + 4*x^7 - 16*x^6 + 7*x^5 + 13*x^4 - 11*x^3 - 4*x^2 + 6*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - 2*x^13 + 6*x^11 - 3*x^10 - 8*x^9 + 13*x^8 + 4*x^7 - 16*x^6 + 7*x^5 + 13*x^4 - 11*x^3 - 4*x^2 + 6*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^14 - 2*x^13 + 6*x^11 - 3*x^10 - 8*x^9 + 13*x^8 + 4*x^7 - 16*x^6 + 7*x^5 + 13*x^4 - 11*x^3 - 4*x^2 + 6*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 2*x^13 + 6*x^11 - 3*x^10 - 8*x^9 + 13*x^8 + 4*x^7 - 16*x^6 + 7*x^5 + 13*x^4 - 11*x^3 - 4*x^2 + 6*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{14}$ (as 14T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 28
The 10 conjugacy class representatives for $D_{14}$
Character table for $D_{14}$

Intermediate fields

\(\Q(\sqrt{5}) \), 7.1.9938375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 28
Degree 14 sibling: 14.0.4247165798546875.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.14.0.1}{14} }$ ${\href{/padicField/3.14.0.1}{14} }$ R ${\href{/padicField/7.14.0.1}{14} }$ ${\href{/padicField/11.7.0.1}{7} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{7}$ ${\href{/padicField/17.2.0.1}{2} }^{7}$ ${\href{/padicField/19.2.0.1}{2} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{7}$ ${\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.7.0.1}{7} }^{2}$ ${\href{/padicField/37.14.0.1}{14} }$ ${\href{/padicField/41.7.0.1}{7} }^{2}$ R ${\href{/padicField/47.2.0.1}{2} }^{7}$ ${\href{/padicField/53.2.0.1}{2} }^{7}$ ${\href{/padicField/59.7.0.1}{7} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(43\) Copy content Toggle raw display 43.2.0.1$x^{2} + 42 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.4.2.1$x^{4} + 84 x^{3} + 1856 x^{2} + 3864 x + 77452$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 84 x^{3} + 1856 x^{2} + 3864 x + 77452$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 84 x^{3} + 1856 x^{2} + 3864 x + 77452$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.43.2t1.a.a$1$ $ 43 $ \(\Q(\sqrt{-43}) \) $C_2$ (as 2T1) $1$ $-1$
1.215.2t1.a.a$1$ $ 5 \cdot 43 $ \(\Q(\sqrt{-215}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 2.215.7t2.a.c$2$ $ 5 \cdot 43 $ 7.1.9938375.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.215.7t2.a.a$2$ $ 5 \cdot 43 $ 7.1.9938375.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.215.14t3.a.b$2$ $ 5 \cdot 43 $ 14.2.493856488203125.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.215.7t2.a.b$2$ $ 5 \cdot 43 $ 7.1.9938375.1 $D_{7}$ (as 7T2) $1$ $0$
* 2.215.14t3.a.c$2$ $ 5 \cdot 43 $ 14.2.493856488203125.1 $D_{14}$ (as 14T3) $1$ $0$
* 2.215.14t3.a.a$2$ $ 5 \cdot 43 $ 14.2.493856488203125.1 $D_{14}$ (as 14T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.