Normalized defining polynomial
\( x^{14} - 7 x^{13} + 49 x^{12} + 7 x^{11} + 161 x^{10} - 3941 x^{9} + 31647 x^{8} - 59709 x^{7} + \cdots + 205354 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[2, 6]$ |
| |
| Discriminant: |
\(37845732546084267945000000000000\)
\(\medspace = 2^{12}\cdot 3^{13}\cdot 5^{13}\cdot 7^{15}\)
|
| |
| Root discriminant: | \(180.12\) |
| |
| Galois root discriminant: | $2^{6/7}3^{13/14}5^{13/14}7^{47/42}\approx 197.61294964896845$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{105}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{16\cdots 47}a^{13}-\frac{31\cdots 52}{16\cdots 47}a^{12}-\frac{62\cdots 55}{16\cdots 47}a^{11}+\frac{97\cdots 98}{16\cdots 47}a^{10}+\frac{37\cdots 89}{16\cdots 47}a^{9}-\frac{87\cdots 62}{16\cdots 47}a^{8}+\frac{36\cdots 51}{16\cdots 47}a^{7}-\frac{77\cdots 54}{16\cdots 47}a^{6}-\frac{48\cdots 98}{12\cdots 19}a^{5}-\frac{76\cdots 69}{16\cdots 47}a^{4}-\frac{31\cdots 76}{16\cdots 47}a^{3}+\frac{26\cdots 12}{16\cdots 47}a^{2}-\frac{57\cdots 16}{16\cdots 47}a+\frac{41\cdots 38}{16\cdots 47}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{32\cdots 10}{16\cdots 47}a^{13}+\frac{24\cdots 40}{16\cdots 47}a^{12}-\frac{17\cdots 85}{16\cdots 47}a^{11}+\frac{94\cdots 13}{16\cdots 47}a^{10}-\frac{60\cdots 22}{16\cdots 47}a^{9}+\frac{13\cdots 91}{16\cdots 47}a^{8}-\frac{11\cdots 56}{16\cdots 47}a^{7}+\frac{26\cdots 91}{16\cdots 47}a^{6}-\frac{41\cdots 86}{12\cdots 19}a^{5}+\frac{46\cdots 28}{16\cdots 47}a^{4}-\frac{11\cdots 89}{16\cdots 47}a^{3}-\frac{14\cdots 50}{16\cdots 47}a^{2}+\frac{78\cdots 45}{16\cdots 47}a-\frac{90\cdots 87}{16\cdots 47}$, $\frac{12\cdots 52}{16\cdots 57}a^{13}+\frac{10\cdots 72}{16\cdots 57}a^{12}-\frac{76\cdots 24}{16\cdots 57}a^{11}+\frac{91\cdots 24}{16\cdots 57}a^{10}-\frac{34\cdots 12}{16\cdots 57}a^{9}+\frac{52\cdots 76}{16\cdots 57}a^{8}-\frac{47\cdots 52}{16\cdots 57}a^{7}+\frac{13\cdots 92}{16\cdots 57}a^{6}-\frac{32\cdots 44}{16\cdots 57}a^{5}+\frac{40\cdots 96}{16\cdots 57}a^{4}-\frac{72\cdots 40}{16\cdots 57}a^{3}-\frac{31\cdots 12}{16\cdots 57}a^{2}+\frac{18\cdots 80}{16\cdots 57}a-\frac{28\cdots 27}{16\cdots 57}$, $\frac{61\cdots 57}{16\cdots 47}a^{13}+\frac{13\cdots 90}{16\cdots 47}a^{12}-\frac{98\cdots 50}{16\cdots 47}a^{11}+\frac{44\cdots 37}{16\cdots 47}a^{10}+\frac{16\cdots 29}{16\cdots 47}a^{9}+\frac{19\cdots 91}{16\cdots 47}a^{8}-\frac{56\cdots 90}{16\cdots 47}a^{7}+\frac{34\cdots 22}{16\cdots 47}a^{6}-\frac{44\cdots 89}{12\cdots 19}a^{5}+\frac{35\cdots 24}{16\cdots 47}a^{4}+\frac{18\cdots 02}{16\cdots 47}a^{3}+\frac{43\cdots 15}{16\cdots 47}a^{2}+\frac{96\cdots 44}{16\cdots 47}a+\frac{42\cdots 65}{16\cdots 47}$, $\frac{24\cdots 55}{16\cdots 47}a^{13}+\frac{17\cdots 50}{16\cdots 47}a^{12}-\frac{10\cdots 30}{16\cdots 47}a^{11}-\frac{51\cdots 28}{16\cdots 47}a^{10}+\frac{22\cdots 43}{16\cdots 47}a^{9}+\frac{12\cdots 06}{16\cdots 47}a^{8}-\frac{69\cdots 87}{16\cdots 47}a^{7}+\frac{98\cdots 06}{16\cdots 47}a^{6}+\frac{38\cdots 03}{12\cdots 19}a^{5}+\frac{55\cdots 84}{16\cdots 47}a^{4}+\frac{99\cdots 39}{16\cdots 47}a^{3}+\frac{16\cdots 43}{16\cdots 47}a^{2}+\frac{16\cdots 82}{16\cdots 47}a+\frac{27\cdots 83}{16\cdots 47}$, $\frac{27\cdots 46}{16\cdots 47}a^{13}-\frac{10\cdots 46}{16\cdots 47}a^{12}+\frac{83\cdots 66}{16\cdots 47}a^{11}+\frac{34\cdots 20}{16\cdots 47}a^{10}+\frac{10\cdots 91}{16\cdots 47}a^{9}-\frac{99\cdots 04}{16\cdots 47}a^{8}+\frac{48\cdots 03}{16\cdots 47}a^{7}+\frac{48\cdots 58}{16\cdots 47}a^{6}+\frac{11\cdots 61}{12\cdots 19}a^{5}+\frac{95\cdots 84}{16\cdots 47}a^{4}-\frac{28\cdots 78}{16\cdots 47}a^{3}-\frac{18\cdots 06}{16\cdots 47}a^{2}+\frac{61\cdots 29}{16\cdots 47}a+\frac{31\cdots 61}{16\cdots 47}$, $\frac{26\cdots 55}{16\cdots 47}a^{13}-\frac{21\cdots 29}{16\cdots 47}a^{12}+\frac{15\cdots 43}{16\cdots 47}a^{11}-\frac{14\cdots 70}{16\cdots 47}a^{10}+\frac{57\cdots 70}{16\cdots 47}a^{9}-\frac{10\cdots 55}{16\cdots 47}a^{8}+\frac{94\cdots 40}{16\cdots 47}a^{7}-\frac{25\cdots 89}{16\cdots 47}a^{6}+\frac{42\cdots 60}{12\cdots 19}a^{5}-\frac{63\cdots 91}{16\cdots 47}a^{4}+\frac{12\cdots 94}{16\cdots 47}a^{3}+\frac{53\cdots 63}{16\cdots 47}a^{2}-\frac{29\cdots 45}{16\cdots 47}a+\frac{49\cdots 03}{16\cdots 47}$, $\frac{37\cdots 56}{16\cdots 47}a^{13}+\frac{31\cdots 99}{16\cdots 47}a^{12}-\frac{23\cdots 99}{16\cdots 47}a^{11}+\frac{41\cdots 96}{16\cdots 47}a^{10}-\frac{20\cdots 10}{16\cdots 47}a^{9}+\frac{20\cdots 92}{16\cdots 47}a^{8}-\frac{14\cdots 29}{16\cdots 47}a^{7}+\frac{39\cdots 03}{16\cdots 47}a^{6}-\frac{64\cdots 46}{12\cdots 19}a^{5}+\frac{97\cdots 76}{16\cdots 47}a^{4}-\frac{18\cdots 52}{16\cdots 47}a^{3}-\frac{80\cdots 85}{16\cdots 47}a^{2}+\frac{45\cdots 17}{16\cdots 47}a-\frac{73\cdots 35}{16\cdots 47}$
|
| |
| Regulator: | \( 22259005136.311165 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 22259005136.311165 \cdot 4}{2\cdot\sqrt{37845732546084267945000000000000}}\cr\approx \mathstrut & 1.78101053695517 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{105}) \), 7.1.600362847000000.29 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | 14.0.5406533220869181135000000000000.5 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.2.0.1}{2} }^{6}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.3.0.1}{3} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.14.0.1}{14} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{7}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.3.0.1}{3} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.7.6a1.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $$[\ ]_{7}^{3}$$ |
| 2.1.7.6a1.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $$[\ ]_{7}^{3}$$ | |
|
\(3\)
| 3.1.14.13a1.1 | $x^{14} + 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ |
|
\(5\)
| 5.1.14.13a1.1 | $x^{14} + 5$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ |
|
\(7\)
| 7.1.14.15a1.4 | $x^{14} + 7 x^{2} + 21$ | $14$ | $1$ | $15$ | $F_7 \times C_2$ | $$[\frac{7}{6}]_{6}^{2}$$ |