Normalized defining polynomial
\( x^{14} - 420 x^{11} + 2100 x^{10} + 6090 x^{9} - 107310 x^{8} + 622710 x^{7} - 2442300 x^{6} + \cdots - 4782480 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[2, 6]$ |
| |
| Discriminant: |
\(37845732546084267945000000000000\)
\(\medspace = 2^{12}\cdot 3^{13}\cdot 5^{13}\cdot 7^{15}\)
|
| |
| Root discriminant: | \(180.12\) |
| |
| Galois root discriminant: | $2^{6/7}3^{13/14}5^{13/14}7^{47/42}\approx 197.61294964896845$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{105}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{104}a^{12}-\frac{1}{52}a^{11}-\frac{1}{13}a^{10}-\frac{2}{13}a^{9}-\frac{1}{13}a^{8}+\frac{3}{52}a^{7}-\frac{1}{52}a^{6}-\frac{3}{52}a^{5}-\frac{4}{13}a^{4}-\frac{11}{26}a^{3}+\frac{2}{13}a^{2}+\frac{6}{13}a+\frac{5}{13}$, $\frac{1}{44\cdots 76}a^{13}+\frac{53\cdots 23}{44\cdots 76}a^{12}+\frac{98\cdots 99}{22\cdots 88}a^{11}+\frac{11\cdots 21}{11\cdots 94}a^{10}-\frac{10\cdots 90}{55\cdots 47}a^{9}+\frac{51\cdots 77}{22\cdots 88}a^{8}-\frac{94\cdots 27}{55\cdots 47}a^{7}+\frac{22\cdots 98}{55\cdots 47}a^{6}-\frac{64\cdots 27}{22\cdots 88}a^{5}-\frac{25\cdots 87}{11\cdots 94}a^{4}+\frac{15\cdots 15}{11\cdots 94}a^{3}-\frac{43\cdots 57}{55\cdots 47}a^{2}-\frac{20\cdots 58}{55\cdots 47}a-\frac{19\cdots 53}{55\cdots 47}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{21\cdots 11}{44\cdots 76}a^{13}-\frac{31\cdots 23}{44\cdots 76}a^{12}-\frac{58\cdots 68}{55\cdots 47}a^{11}+\frac{45\cdots 97}{22\cdots 88}a^{10}-\frac{41\cdots 27}{55\cdots 47}a^{9}-\frac{90\cdots 93}{22\cdots 88}a^{8}+\frac{52\cdots 51}{11\cdots 94}a^{7}-\frac{13\cdots 83}{55\cdots 47}a^{6}+\frac{19\cdots 43}{22\cdots 88}a^{5}-\frac{25\cdots 41}{11\cdots 94}a^{4}+\frac{25\cdots 75}{55\cdots 47}a^{3}-\frac{34\cdots 22}{55\cdots 47}a^{2}+\frac{26\cdots 08}{55\cdots 47}a-\frac{91\cdots 87}{55\cdots 47}$, $\frac{23\cdots 16}{17\cdots 31}a^{13}+\frac{22\cdots 80}{17\cdots 31}a^{12}+\frac{17\cdots 72}{17\cdots 31}a^{11}-\frac{98\cdots 96}{17\cdots 31}a^{10}+\frac{39\cdots 12}{17\cdots 31}a^{9}+\frac{18\cdots 44}{17\cdots 31}a^{8}-\frac{23\cdots 76}{17\cdots 31}a^{7}+\frac{12\cdots 40}{17\cdots 31}a^{6}-\frac{44\cdots 60}{17\cdots 31}a^{5}+\frac{12\cdots 20}{17\cdots 31}a^{4}-\frac{25\cdots 80}{17\cdots 31}a^{3}+\frac{34\cdots 80}{17\cdots 31}a^{2}-\frac{28\cdots 40}{17\cdots 31}a+\frac{10\cdots 31}{17\cdots 31}$, $\frac{55\cdots 93}{22\cdots 88}a^{13}+\frac{10\cdots 45}{17\cdots 76}a^{12}-\frac{27\cdots 29}{22\cdots 88}a^{11}-\frac{23\cdots 79}{22\cdots 88}a^{10}+\frac{15\cdots 61}{55\cdots 47}a^{9}+\frac{37\cdots 11}{11\cdots 94}a^{8}-\frac{14\cdots 95}{55\cdots 47}a^{7}+\frac{76\cdots 09}{11\cdots 94}a^{6}-\frac{51\cdots 95}{11\cdots 94}a^{5}-\frac{12\cdots 75}{55\cdots 47}a^{4}+\frac{83\cdots 07}{11\cdots 94}a^{3}-\frac{56\cdots 39}{55\cdots 47}a^{2}+\frac{37\cdots 89}{55\cdots 47}a-\frac{96\cdots 33}{55\cdots 47}$, $\frac{12\cdots 89}{44\cdots 76}a^{13}-\frac{19\cdots 23}{44\cdots 76}a^{12}-\frac{75\cdots 59}{11\cdots 94}a^{11}+\frac{13\cdots 77}{11\cdots 94}a^{10}-\frac{22\cdots 85}{55\cdots 47}a^{9}-\frac{52\cdots 15}{22\cdots 88}a^{8}+\frac{14\cdots 58}{55\cdots 47}a^{7}-\frac{15\cdots 05}{11\cdots 94}a^{6}+\frac{10\cdots 65}{22\cdots 88}a^{5}-\frac{72\cdots 01}{55\cdots 47}a^{4}+\frac{28\cdots 13}{11\cdots 94}a^{3}-\frac{18\cdots 74}{55\cdots 47}a^{2}+\frac{14\cdots 24}{55\cdots 47}a-\frac{37\cdots 41}{42\cdots 19}$, $\frac{79\cdots 87}{22\cdots 88}a^{13}+\frac{25\cdots 99}{44\cdots 76}a^{12}+\frac{15\cdots 37}{22\cdots 88}a^{11}-\frac{83\cdots 68}{55\cdots 47}a^{10}+\frac{56\cdots 05}{11\cdots 94}a^{9}+\frac{33\cdots 07}{11\cdots 94}a^{8}-\frac{74\cdots 39}{22\cdots 88}a^{7}+\frac{28\cdots 79}{17\cdots 76}a^{6}-\frac{13\cdots 49}{22\cdots 88}a^{5}+\frac{67\cdots 71}{42\cdots 19}a^{4}-\frac{34\cdots 59}{11\cdots 94}a^{3}+\frac{17\cdots 26}{42\cdots 19}a^{2}-\frac{13\cdots 86}{42\cdots 19}a+\frac{59\cdots 07}{55\cdots 47}$, $\frac{23\cdots 73}{44\cdots 76}a^{13}-\frac{45\cdots 65}{44\cdots 76}a^{12}-\frac{87\cdots 13}{11\cdots 94}a^{11}-\frac{55\cdots 99}{22\cdots 88}a^{10}+\frac{16\cdots 53}{11\cdots 94}a^{9}+\frac{95\cdots 93}{22\cdots 88}a^{8}-\frac{37\cdots 65}{55\cdots 47}a^{7}+\frac{40\cdots 57}{11\cdots 94}a^{6}-\frac{29\cdots 83}{22\cdots 88}a^{5}+\frac{41\cdots 51}{11\cdots 94}a^{4}-\frac{41\cdots 77}{55\cdots 47}a^{3}+\frac{55\cdots 70}{55\cdots 47}a^{2}-\frac{41\cdots 17}{55\cdots 47}a+\frac{13\cdots 53}{55\cdots 47}$, $\frac{22\cdots 17}{55\cdots 47}a^{13}+\frac{30\cdots 79}{44\cdots 76}a^{12}+\frac{20\cdots 67}{11\cdots 94}a^{11}-\frac{39\cdots 37}{22\cdots 88}a^{10}+\frac{31\cdots 18}{55\cdots 47}a^{9}+\frac{21\cdots 82}{55\cdots 47}a^{8}-\frac{85\cdots 61}{22\cdots 88}a^{7}+\frac{31\cdots 47}{17\cdots 76}a^{6}-\frac{14\cdots 01}{22\cdots 88}a^{5}+\frac{71\cdots 62}{42\cdots 19}a^{4}-\frac{17\cdots 83}{55\cdots 47}a^{3}+\frac{16\cdots 07}{42\cdots 19}a^{2}-\frac{11\cdots 53}{42\cdots 19}a+\frac{44\cdots 77}{55\cdots 47}$
|
| |
| Regulator: | \( 45532024055.155136 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 45532024055.155136 \cdot 2}{2\cdot\sqrt{37845732546084267945000000000000}}\cr\approx \mathstrut & 1.82157769663390 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{105}) \), 7.1.600362847000000.35 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | 14.0.5406533220869181135000000000000.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.2.0.1}{2} }^{6}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.3.0.1}{3} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.14.0.1}{14} }$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.3.0.1}{3} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.7.6a1.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $$[\ ]_{7}^{3}$$ |
| 2.1.7.6a1.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $$[\ ]_{7}^{3}$$ | |
|
\(3\)
| 3.1.14.13a1.1 | $x^{14} + 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ |
|
\(5\)
| 5.1.14.13a1.1 | $x^{14} + 5$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ |
|
\(7\)
| 7.1.14.15a1.4 | $x^{14} + 7 x^{2} + 21$ | $14$ | $1$ | $15$ | $F_7 \times C_2$ | $$[\frac{7}{6}]_{6}^{2}$$ |