Normalized defining polynomial
\( x^{14} - 56 x^{11} + 196 x^{10} - 224 x^{9} + 840 x^{8} - 5648 x^{7} + 15876 x^{6} - 23520 x^{5} + 22512 x^{4} - 21952 x^{3} + 18704 x^{2} - 4480 x - 6272 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36202216328934500847321088=2^{27}\cdot 7^{12}\cdot 11^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{7} - \frac{1}{6} a^{4} + \frac{1}{12} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{48} a^{8} - \frac{1}{12} a^{5} + \frac{1}{24} a^{4} + \frac{1}{6} a^{3} - \frac{5}{12} a^{2} + \frac{1}{3} a$, $\frac{1}{96} a^{9} - \frac{1}{24} a^{6} + \frac{1}{48} a^{5} + \frac{1}{12} a^{4} - \frac{5}{24} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{96} a^{10} + \frac{1}{48} a^{6} + \frac{1}{12} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{96} a^{11} - \frac{1}{48} a^{7} + \frac{1}{12} a^{6} + \frac{1}{8} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{192} a^{12} - \frac{1}{16} a^{6} + \frac{1}{6} a^{5} + \frac{1}{16} a^{4} + \frac{5}{12} a^{3} + \frac{11}{24} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{38361535296} a^{13} - \frac{9597773}{5480219328} a^{12} - \frac{408291}{456684944} a^{11} - \frac{121511}{171256854} a^{10} + \frac{3324325}{2740109664} a^{9} + \frac{1808257}{456684944} a^{8} + \frac{1052777}{1370054832} a^{7} + \frac{937482331}{9590383824} a^{6} - \frac{72623155}{685027416} a^{5} + \frac{232845463}{1370054832} a^{4} - \frac{14240883}{114171236} a^{3} + \frac{77988275}{685027416} a^{2} - \frac{52038151}{171256854} a - \frac{3120328}{85628427}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 650123158.139 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for [7^2:6_3]2 |
| Character table for [7^2:6_3]2 |
Intermediate fields
| \(\Q(\sqrt{22}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.6.5.6 | $x^{6} + 224$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.7.7.6 | $x^{7} + 28 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |