Normalized defining polynomial
\( x^{14} - 1280 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[2, 6]$ |
| |
| Discriminant: |
\(3391115364245000000000000\)
\(\medspace = 2^{12}\cdot 5^{13}\cdot 7^{14}\)
|
| |
| Root discriminant: | \(56.52\) |
| |
| Galois root discriminant: | $2^{6/7}5^{13/14}7^{47/42}\approx 71.24825556085122$ | ||
| Ramified primes: |
\(2\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{4}a^{5}$, $\frac{1}{8}a^{6}$, $\frac{1}{32}a^{7}-\frac{1}{2}$, $\frac{1}{32}a^{8}-\frac{1}{2}a$, $\frac{1}{64}a^{9}-\frac{1}{4}a^{2}$, $\frac{1}{64}a^{10}-\frac{1}{4}a^{3}$, $\frac{1}{128}a^{11}-\frac{1}{8}a^{4}$, $\frac{1}{128}a^{12}-\frac{1}{8}a^{5}$, $\frac{1}{256}a^{13}-\frac{1}{16}a^{6}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{32}a^{7}-\frac{1}{2}$, $\frac{1}{128}a^{13}+\frac{1}{64}a^{12}+\frac{3}{128}a^{11}+\frac{1}{64}a^{10}-\frac{1}{32}a^{8}-\frac{5}{32}a^{7}-\frac{3}{8}a^{6}-\frac{1}{2}a^{5}-\frac{5}{8}a^{4}-\frac{3}{4}a^{3}+\frac{5}{2}a+\frac{11}{2}$, $\frac{1}{256}a^{13}+\frac{1}{128}a^{12}-\frac{1}{64}a^{10}-\frac{1}{64}a^{9}-\frac{1}{32}a^{7}-\frac{3}{16}a^{6}-\frac{3}{8}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-a-\frac{1}{2}$, $\frac{1}{256}a^{13}-\frac{1}{128}a^{12}+\frac{1}{64}a^{10}-\frac{1}{64}a^{9}-\frac{1}{32}a^{7}+\frac{3}{16}a^{6}-\frac{3}{8}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-a+\frac{1}{2}$, $\frac{5}{256}a^{13}-\frac{1}{64}a^{12}-\frac{1}{64}a^{11}+\frac{5}{64}a^{10}-\frac{3}{32}a^{9}+\frac{7}{32}a^{7}-\frac{7}{16}a^{6}+\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{7}{4}a^{3}+\frac{9}{2}a^{2}-2a-\frac{13}{2}$, $\frac{7}{256}a^{13}-\frac{9}{128}a^{12}-\frac{3}{128}a^{11}+\frac{3}{16}a^{10}-\frac{5}{64}a^{9}-\frac{13}{32}a^{8}+\frac{17}{32}a^{7}+\frac{11}{16}a^{6}-\frac{17}{8}a^{5}-\frac{3}{8}a^{4}+7a^{3}-\frac{17}{4}a^{2}-\frac{37}{2}a+\frac{51}{2}$, $\frac{5}{256}a^{13}-\frac{3}{128}a^{12}+\frac{11}{128}a^{11}-\frac{1}{32}a^{10}+\frac{11}{64}a^{9}-\frac{1}{4}a^{8}+\frac{19}{32}a^{7}-\frac{3}{16}a^{6}+\frac{13}{8}a^{5}-\frac{13}{8}a^{4}+\frac{7}{2}a^{3}-\frac{11}{4}a^{2}+15a-\frac{19}{2}$
|
| |
| Regulator: | \( 3209037.9147104514 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 3209037.9147104514 \cdot 2}{2\cdot\sqrt{3391115364245000000000000}}\cr\approx \mathstrut & 0.428886886413967 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 7.1.823543000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{7}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.7.0.1}{7} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.7.12a1.1 | $x^{14} + 7 x^{13} + 28 x^{12} + 77 x^{11} + 161 x^{10} + 266 x^{9} + 357 x^{8} + 393 x^{7} + 357 x^{6} + 266 x^{5} + 161 x^{4} + 77 x^{3} + 28 x^{2} + 7 x + 3$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $$[\ ]_{7}^{6}$$ |
|
\(5\)
| 5.1.14.13a1.1 | $x^{14} + 5$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $$[\ ]_{14}^{6}$$ |
|
\(7\)
| 7.2.7.14a6.1 | $x^{14} + 42 x^{13} + 777 x^{12} + 8316 x^{11} + 56889 x^{10} + 259686 x^{9} + 803817 x^{8} + 1690632 x^{7} + 2411451 x^{6} + 2337174 x^{5} + 1536003 x^{4} + 673596 x^{3} + 188818 x^{2} + 30660 x + 2215$ | $7$ | $2$ | $14$ | $F_7 \times C_2$ | $$[\frac{7}{6}]_{6}^{2}$$ |