Normalized defining polynomial
\( x^{14} - 6 x^{13} + 29 x^{12} - 120 x^{11} + 239 x^{10} - 442 x^{9} + 277 x^{8} + 2984 x^{7} - 5118 x^{6} + 4052 x^{5} - 3310 x^{4} - 484 x^{3} + 11915 x^{2} - 3294 x + 9153 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(325573429585516975729147904=2^{27}\cdot 7^{10}\cdot 97^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{63} a^{11} - \frac{10}{63} a^{10} - \frac{4}{63} a^{9} - \frac{10}{63} a^{8} + \frac{1}{63} a^{7} + \frac{2}{9} a^{6} - \frac{23}{63} a^{5} + \frac{11}{63} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2} + \frac{20}{63} a - \frac{2}{7}$, $\frac{1}{1071} a^{12} + \frac{2}{357} a^{11} - \frac{122}{1071} a^{10} - \frac{32}{1071} a^{9} - \frac{6}{119} a^{8} - \frac{172}{357} a^{7} + \frac{48}{119} a^{6} + \frac{5}{51} a^{5} - \frac{115}{1071} a^{4} - \frac{5}{51} a^{3} + \frac{29}{1071} a^{2} + \frac{533}{1071} a + \frac{24}{119}$, $\frac{1}{1139639814560780469216} a^{13} - \frac{7386921230399239}{67037636150634145248} a^{12} - \frac{191355474932165423}{31656661515577235256} a^{11} + \frac{902120914603012843}{10552220505192411752} a^{10} + \frac{10119385908445218941}{162805687794397209888} a^{9} - \frac{105402717739929768629}{1139639814560780469216} a^{8} + \frac{135981613183791022717}{569819907280390234608} a^{7} - \frac{60030734574278271961}{569819907280390234608} a^{6} - \frac{29715680330348240147}{284909953640195117304} a^{5} - \frac{5822693172333495865}{11871248068341463221} a^{4} - \frac{132844087535912839175}{569819907280390234608} a^{3} - \frac{158738535227103240235}{569819907280390234608} a^{2} - \frac{21768512051919436981}{379879938186926823072} a + \frac{482998059642501029}{6029840288681378144}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 193942346.218 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3528 |
| The 35 conjugacy class representatives for [F_42(7)^2]2=F_42(7)wr2 |
| Character table for [F_42(7)^2]2=F_42(7)wr2 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.7.7.6 | $x^{7} + 28 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.5.2 | $x^{6} - 2425$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |