Normalized defining polynomial
\( x^{14} - 7 x^{13} + 28 x^{12} - 77 x^{11} + 203 x^{10} - 476 x^{9} + 315 x^{8} + 1035 x^{7} - 1869 x^{6} + 532 x^{5} + 707 x^{4} - 413 x^{3} + 1666 x^{2} - 1645 x - 1097 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31003224101752232300544=2^{12}\cdot 3^{13}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{508} a^{10} - \frac{5}{508} a^{9} - \frac{37}{508} a^{8} - \frac{19}{127} a^{7} + \frac{123}{508} a^{6} - \frac{251}{508} a^{5} + \frac{23}{508} a^{4} + \frac{41}{254} a^{3} - \frac{227}{508} a^{2} + \frac{113}{508} a - \frac{11}{508}$, $\frac{1}{508} a^{11} - \frac{31}{254} a^{9} - \frac{7}{508} a^{8} - \frac{3}{508} a^{7} + \frac{55}{254} a^{6} - \frac{54}{127} a^{5} + \frac{197}{508} a^{4} + \frac{183}{508} a^{3} + \frac{62}{127} a^{2} - \frac{52}{127} a + \frac{199}{508}$, $\frac{1}{6492748} a^{12} - \frac{3}{3246374} a^{11} - \frac{2637}{6492748} a^{10} + \frac{3310}{1623187} a^{9} + \frac{11700}{1623187} a^{8} - \frac{133353}{3246374} a^{7} + \frac{392837}{6492748} a^{6} - \frac{94683}{3246374} a^{5} - \frac{179013}{1623187} a^{4} + \frac{352511}{1623187} a^{3} + \frac{1586383}{6492748} a^{2} - \frac{1137269}{3246374} a - \frac{306879}{6492748}$, $\frac{1}{7057617076} a^{13} + \frac{537}{7057617076} a^{12} - \frac{2076417}{7057617076} a^{11} - \frac{3923727}{7057617076} a^{10} - \frac{375555867}{3528808538} a^{9} - \frac{278570114}{1764404269} a^{8} - \frac{1447655967}{7057617076} a^{7} - \frac{1322643835}{7057617076} a^{6} - \frac{368013646}{1764404269} a^{5} - \frac{1750978479}{3528808538} a^{4} - \frac{3121890215}{7057617076} a^{3} + \frac{3316610987}{7057617076} a^{2} - \frac{2129872079}{7057617076} a + \frac{468248097}{7057617076}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1049488.352113655 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), 7.1.38423222208.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.12.1 | $x^{14} - 2 x^{7} + 4$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ |
| $3$ | 3.14.13.1 | $x^{14} - 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ |
| $7$ | 7.14.15.5 | $x^{14} - 21 x^{13} + 7 x^{12} + 14 x^{11} - 21 x^{9} + 7 x^{7} + 14 x^{6} - 21 x^{4} + 14 x^{3} + 7 x^{2} + 14$ | $14$ | $1$ | $15$ | $F_7$ | $[7/6]_{6}$ |