Normalized defining polynomial
\( x^{14} - 273 x^{12} + 31941 x^{10} - 2076165 x^{8} - 264 x^{7} + 80970435 x^{6} - 216216 x^{5} - 1894708179 x^{4} - 14054040 x^{3} + 24631206327 x^{2} - 109621512 x - 137230989255 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(223287531694546552453480881226223313579147264=2^{20}\cdot 3^{13}\cdot 7^{14}\cdot 11^{12}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1471.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{12} a^{8} + \frac{1}{4}$, $\frac{1}{12} a^{9} + \frac{1}{4} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{72} a^{12} - \frac{1}{24} a^{8} + \frac{1}{6} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{274070079639583478273834023815976338718776} a^{13} + \frac{1167140368157162035668032198447572895107}{274070079639583478273834023815976338718776} a^{12} - \frac{717550299700327938887637890481154202281}{91356693213194492757944674605325446239592} a^{11} + \frac{246235736039533884040509957528682009565}{91356693213194492757944674605325446239592} a^{10} - \frac{586574107364534746451641465391299660087}{15226115535532415459657445767554241039932} a^{9} + \frac{1400728326095102764264473890907184418347}{45678346606597246378972337302662723119796} a^{8} - \frac{144522115716728289858993689806741609531}{11419586651649311594743084325665680779949} a^{7} + \frac{3649550094971542899942416851364542929631}{22839173303298623189486168651331361559898} a^{6} + \frac{9279854964893820438253153116976553301805}{91356693213194492757944674605325446239592} a^{5} + \frac{6033964072715199424287688698465367159113}{30452231071064830919314891535108482079864} a^{4} + \frac{14818212582535201690424012514490634253403}{30452231071064830919314891535108482079864} a^{3} - \frac{10817288700549745278155264652337183267363}{30452231071064830919314891535108482079864} a^{2} - \frac{1611082167989028299242617460976974125537}{15226115535532415459657445767554241039932} a - \frac{4641037702319632393528824760483180640839}{15226115535532415459657445767554241039932}$
Class group and class number
$C_{2}\times C_{2}\times C_{42}$, which has order $168$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 918103443441014.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{39}) \), 7.1.68069081958026688.23 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.20.8 | $x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 2$ | $14$ | $1$ | $20$ | $(C_7:C_3) \times C_2$ | $[2]_{7}^{3}$ |
| $3$ | 3.14.13.1 | $x^{14} - 3$ | $14$ | $1$ | $13$ | $F_7 \times C_2$ | $[\ ]_{14}^{6}$ |
| $7$ | 7.7.7.5 | $x^{7} + 7 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ |
| 7.7.7.5 | $x^{7} + 7 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| $11$ | 11.14.12.1 | $x^{14} - 11 x^{7} + 847$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |