Normalized defining polynomial
\( x^{14} - 2 x^{13} - 1657 x^{12} + 10232 x^{11} + 916925 x^{10} - 8273862 x^{9} - 203574775 x^{8} + 2500711652 x^{7} + 11370375683 x^{6} - 238430330210 x^{5} + 435254400205 x^{4} + 11976481209516 x^{3} - 121702249507305 x^{2} + 237150347682498 x - 613625842441849 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1926377462756066120847727193419105645413531648=2^{27}\cdot 3^{6}\cdot 7^{11}\cdot 263^{3}\cdot 3529^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1716.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 263, 3529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{18} a^{8} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{7}{18}$, $\frac{1}{18} a^{9} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{7}{18} a + \frac{1}{3}$, $\frac{1}{378} a^{10} + \frac{5}{189} a^{9} + \frac{5}{189} a^{8} + \frac{1}{378} a^{7} + \frac{1}{18} a^{6} + \frac{7}{54} a^{5} - \frac{23}{54} a^{4} + \frac{23}{126} a^{3} - \frac{61}{189} a^{2} + \frac{41}{126} a - \frac{1}{378}$, $\frac{1}{378} a^{11} - \frac{1}{63} a^{9} + \frac{1}{63} a^{8} + \frac{11}{378} a^{7} + \frac{7}{54} a^{6} - \frac{1}{6} a^{5} - \frac{43}{378} a^{4} + \frac{5}{27} a^{3} - \frac{169}{378} a^{2} - \frac{139}{378} a - \frac{95}{378}$, $\frac{1}{378} a^{12} + \frac{1}{126} a^{9} + \frac{4}{189} a^{8} - \frac{4}{189} a^{7} + \frac{31}{189} a^{5} + \frac{7}{54} a^{4} + \frac{4}{27} a^{3} - \frac{89}{189} a^{2} + \frac{13}{378} a - \frac{1}{63}$, $\frac{1}{75896461470243013352784637035058033519631180709004741350665187596597265458166} a^{13} - \frac{19701988338843235593570092254008325423709091785840886647661139511555515025}{25298820490081004450928212345019344506543726903001580450221729198865755152722} a^{12} - \frac{38730083214625676594298712337163705894194796773005941081659710874466423149}{37948230735121506676392318517529016759815590354502370675332593798298632729083} a^{11} + \frac{2139981079364683719877874796583143204072468779682572214931953222103086553}{25298820490081004450928212345019344506543726903001580450221729198865755152722} a^{10} - \frac{17321087905113843942530847470997581309857410516888627749908933173846968744}{37948230735121506676392318517529016759815590354502370675332593798298632729083} a^{9} + \frac{101791464663696055343617201909884958338139411711406280202372529777534465162}{5421175819303072382341759788218430965687941479214624382190370542614090389869} a^{8} - \frac{855930056137907696340563621745185067731905583709873486709517103500271184981}{37948230735121506676392318517529016759815590354502370675332593798298632729083} a^{7} - \frac{4899705981126493971219736738006988919983834173951023686937813668463806777563}{37948230735121506676392318517529016759815590354502370675332593798298632729083} a^{6} + \frac{4642518756501317872322325665866294573838214272961059031817004743566630485623}{75896461470243013352784637035058033519631180709004741350665187596597265458166} a^{5} + \frac{17648694967336985239402654729863584944459754413776473786852029178566514599}{8432940163360334816976070781673114835514575634333860150073909732955251717574} a^{4} - \frac{4471740584307986321486573716018162860559488655284335068470871343847697541680}{37948230735121506676392318517529016759815590354502370675332593798298632729083} a^{3} - \frac{14284593189928531005466131060247277052937320978642354000981223043307281605483}{75896461470243013352784637035058033519631180709004741350665187596597265458166} a^{2} + \frac{1326466678528935145586248657652209293576508453735443679705870779770118617870}{5421175819303072382341759788218430965687941479214624382190370542614090389869} a + \frac{1832529774340110223401147922081612545387481208439953039777500368093549676168}{37948230735121506676392318517529016759815590354502370675332593798298632729083}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 393913205273000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3528 |
| The 35 conjugacy class representatives for [F_42(7)^2]2=F_42(7)wr2 |
| Character table for [F_42(7)^2]2=F_42(7)wr2 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.27.213 | $x^{14} + 2 x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{8} + 4 x^{6} + 4 x^{5} + 4 x^{2} - 2$ | $14$ | $1$ | $27$ | $(C_7:C_3) \times C_2$ | $[3]_{7}^{3}$ |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.7.7.1 | $x^{7} + 42 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| 263 | Data not computed | ||||||
| 3529 | Data not computed | ||||||