Normalized defining polynomial
\( x^{14} + 49 x^{12} - 112 x^{11} + 1008 x^{10} - 2282 x^{9} + 8869 x^{8} - 10485 x^{7} + 17297 x^{6} + 63049 x^{5} - 117859 x^{4} + 627165 x^{3} - 383670 x^{2} + 265545 x - 299295 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1870910462700843890634765625=5^{10}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{12} a^{10} + \frac{1}{6} a^{9} + \frac{5}{12} a^{8} - \frac{1}{4} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{3} a^{2} + \frac{5}{12} a + \frac{1}{4}$, $\frac{1}{72} a^{11} - \frac{1}{72} a^{10} - \frac{1}{72} a^{9} - \frac{5}{24} a^{8} + \frac{7}{24} a^{7} + \frac{1}{72} a^{6} - \frac{1}{12} a^{5} - \frac{1}{8} a^{4} + \frac{17}{72} a^{3} + \frac{5}{72} a^{2} + \frac{1}{3} a + \frac{3}{8}$, $\frac{1}{144} a^{12} - \frac{1}{72} a^{10} - \frac{1}{9} a^{9} + \frac{1}{24} a^{8} + \frac{11}{72} a^{7} + \frac{67}{144} a^{6} + \frac{19}{48} a^{5} + \frac{1}{18} a^{4} - \frac{25}{72} a^{3} - \frac{43}{144} a^{2} + \frac{17}{48} a + \frac{3}{16}$, $\frac{1}{1900673143998405775793212778451648} a^{13} + \frac{1458839339384810444782903044529}{633557714666135258597737592817216} a^{12} + \frac{1342593881899575372266032991861}{950336571999202887896606389225824} a^{11} + \frac{29571863377275338408607466937743}{950336571999202887896606389225824} a^{10} + \frac{35110385458670742736795478686799}{316778857333067629298868796408608} a^{9} + \frac{173098157857736301073681042804453}{475168285999601443948303194612912} a^{8} - \frac{720021496378066874792456369172815}{1900673143998405775793212778451648} a^{7} + \frac{14195453072906340777742691014645}{316778857333067629298868796408608} a^{6} + \frac{687745927764772391150712582440651}{1900673143998405775793212778451648} a^{5} - \frac{39651670366317059158686788312539}{950336571999202887896606389225824} a^{4} + \frac{254267135992939602463798346024747}{1900673143998405775793212778451648} a^{3} - \frac{74017544928433700714647680723739}{316778857333067629298868796408608} a^{2} - \frac{5261319316540720956774007599373}{17598825407392646072159377578256} a + \frac{29428862151946521071510759662815}{70395301629570584288637510313024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 336700643.52 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7:D_7.C_2$ (as 14T12):
| A solvable group of order 196 |
| The 16 conjugacy class representatives for $C_7:D_7.C_2$ |
| Character table for $C_7:D_7.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 7 | Data not computed | ||||||