Normalized defining polynomial
\( x^{14} + 42 x^{12} - 840 x^{11} + 4473 x^{10} - 77728 x^{9} + 235648 x^{8} - 2601696 x^{7} + 6832756 x^{6} - 48638016 x^{5} + 124211584 x^{4} - 490172256 x^{3} + 802837840 x^{2} - 1497646080 x + 723639232 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12275806904099446920772541656987945701376=2^{12}\cdot 7^{16}\cdot 11^{8}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $730.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{112} a^{10} + \frac{1}{56} a^{9} + \frac{3}{56} a^{8} + \frac{3}{56} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{4} - \frac{1}{7} a^{3} + \frac{13}{28} a^{2} - \frac{5}{14} a + \frac{1}{7}$, $\frac{1}{560} a^{11} - \frac{3}{140} a^{9} + \frac{1}{70} a^{8} - \frac{19}{560} a^{7} - \frac{1}{10} a^{6} + \frac{7}{40} a^{5} + \frac{6}{35} a^{4} - \frac{3}{20} a^{3} - \frac{16}{35} a^{2} + \frac{13}{35} a - \frac{9}{35}$, $\frac{1}{32480} a^{12} + \frac{1}{1624} a^{11} - \frac{61}{16240} a^{10} - \frac{109}{4060} a^{9} + \frac{741}{32480} a^{8} + \frac{41}{8120} a^{7} - \frac{79}{1160} a^{6} + \frac{3}{1015} a^{5} + \frac{457}{4060} a^{4} + \frac{643}{4060} a^{3} - \frac{1469}{4060} a^{2} + \frac{351}{2030} a + \frac{69}{203}$, $\frac{1}{158740475241014801215847701264200159680} a^{13} - \frac{21104245965570178449726280084291}{3968511881025370030396192531605003992} a^{12} + \frac{50482960723804109208862478906212569}{79370237620507400607923850632100079840} a^{11} - \frac{15193459724810726838302064709109669}{19842559405126850151980962658025019960} a^{10} - \frac{4373526217639303096031790916080010299}{158740475241014801215847701264200159680} a^{9} + \frac{2364287122969734439095943870133843301}{39685118810253700303961925316050039920} a^{8} + \frac{77392334025137287687191492385644827}{39685118810253700303961925316050039920} a^{7} + \frac{3325419984509160044570270768848280269}{39685118810253700303961925316050039920} a^{6} - \frac{8914390361787184230152729697388628791}{39685118810253700303961925316050039920} a^{5} + \frac{916992445882028134966257863564564987}{4960639851281712537995240664506254990} a^{4} + \frac{21319573644202261246512430196065002}{2480319925640856268997620332253127495} a^{3} - \frac{762162393385837690406375810012183606}{2480319925640856268997620332253127495} a^{2} + \frac{409275768224386968296297946819494801}{1984255940512685015198096265802501996} a + \frac{255429879387827569075484680139630759}{992127970256342507599048132901250998}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1824540926050000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 10 conjugacy class representatives for [1/6_-.F_42(7)^2]2_2 |
| Character table for [1/6_-.F_42(7)^2]2_2 |
Intermediate fields
| \(\Q(\sqrt{29}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.6.5.1 | $x^{6} - 28$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.7.11.1 | $x^{7} + 7 x^{5} + 7$ | $7$ | $1$ | $11$ | $F_7$ | $[11/6]_{6}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.12.8.1 | $x^{12} - 33 x^{9} + 363 x^{6} - 1331 x^{3} + 117128$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |