Properties

Label 14.2.11087878290...9680.1
Degree $14$
Signature $[2, 6]$
Discriminant $2^{16}\cdot 3\cdot 5\cdot 24967\cdot 4517632501$
Root discriminant $27.03$
Ramified primes $2, 3, 5, 24967, 4517632501$
Class number $1$
Class group Trivial
Galois group 14T63

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, -4, 0, -10, 0, 0, -10, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 10*x^6 - 10*x^3 - 4*x - 2)
 
gp: K = bnfinit(x^14 - 10*x^6 - 10*x^3 - 4*x - 2, 1)
 

Normalized defining polynomial

\( x^{14} - 10 x^{6} - 10 x^{3} - 4 x - 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(110878782900601159680=2^{16}\cdot 3\cdot 5\cdot 24967\cdot 4517632501\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 24967, 4517632501$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{4105} a^{13} - \frac{1524}{4105} a^{12} - \frac{854}{4105} a^{11} + \frac{211}{4105} a^{10} - \frac{1374}{4105} a^{9} + \frac{426}{4105} a^{8} - \frac{634}{4105} a^{7} + \frac{1541}{4105} a^{6} - \frac{434}{4105} a^{5} + \frac{511}{4105} a^{4} + \frac{1186}{4105} a^{3} - \frac{1274}{4105} a^{2} - \frac{89}{4105} a + \frac{167}{4105}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 72965.8508871 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T63:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 87178291200
The 135 conjugacy class representatives for S14 are not computed
Character table for S14 is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 28 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.11.0.1}{11} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.14.0.1}{14} }$ ${\href{/LocalNumberField/17.13.0.1}{13} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.14.0.1}{14} }$ ${\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.14.0.1}{14} }$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.16.1$x^{14} + 2 x^{13} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{6} + 2 x^{3} + 2$$14$$1$$16$14T18$[10/7, 10/7, 10/7]_{7}^{6}$
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.10.0.1$x^{10} - x^{3} - x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.9.0.1$x^{9} + x^{2} - 2 x + 2$$1$$9$$0$$C_9$$[\ ]^{9}$
24967Data not computed
4517632501Data not computed