Normalized defining polynomial
\( x^{14} - 546 x^{12} - 1820 x^{11} + 94367 x^{10} + 567476 x^{9} - 4735640 x^{8} - 37791624 x^{7} + 74520719 x^{6} + 960908312 x^{5} + 178767862 x^{4} - 10031125468 x^{3} - 11527474959 x^{2} + 33962524596 x + 53095268772 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98307077841097735657969434524441383862272=2^{16}\cdot 7^{14}\cdot 13^{12}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $847.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{208} a^{7} - \frac{1}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} - \frac{3}{16} a + \frac{1}{8}$, $\frac{1}{208} a^{8} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{2} + \frac{1}{8} a$, $\frac{1}{416} a^{9} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3} - \frac{3}{16} a^{2} + \frac{1}{32} a + \frac{5}{16}$, $\frac{1}{832} a^{10} - \frac{1}{832} a^{9} - \frac{1}{416} a^{8} - \frac{1}{32} a^{6} + \frac{3}{32} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{27}{64} a^{2} - \frac{9}{64} a - \frac{11}{32}$, $\frac{1}{5824} a^{11} + \frac{1}{2912} a^{10} + \frac{5}{5824} a^{9} - \frac{5}{2912} a^{8} - \frac{5}{2912} a^{7} - \frac{3}{32} a^{5} - \frac{5}{64} a^{3} - \frac{11}{32} a^{2} + \frac{23}{64} a - \frac{9}{32}$, $\frac{1}{17472} a^{12} - \frac{1}{2912} a^{10} + \frac{1}{17472} a^{9} - \frac{1}{4368} a^{8} + \frac{5}{4368} a^{7} + \frac{1}{48} a^{6} - \frac{1}{32} a^{5} - \frac{13}{192} a^{4} - \frac{1}{48} a^{3} + \frac{11}{96} a^{2} + \frac{59}{192} a + \frac{5}{32}$, $\frac{1}{365992544096993991951655961159808} a^{13} + \frac{2329743098762551348812524215}{121997514698997997317218653719936} a^{12} - \frac{9838592928720016667035308515}{121997514698997997317218653719936} a^{11} + \frac{132025912442963300168291454127}{365992544096993991951655961159808} a^{10} + \frac{198151127748384829132652700163}{182996272048496995975827980579904} a^{9} - \frac{355382902936413530875149246137}{182996272048496995975827980579904} a^{8} - \frac{30378506707187501499061249339}{26142324578356713710832568654272} a^{7} + \frac{2611033620820456733337852441}{223438671609886441972927937216} a^{6} + \frac{478901395080364456934820823967}{4021896088977955955512702869888} a^{5} - \frac{29320762993880888645552606437}{4021896088977955955512702869888} a^{4} - \frac{570940867925412977922936044279}{4021896088977955955512702869888} a^{3} - \frac{636964781854947678589306829167}{4021896088977955955512702869888} a^{2} + \frac{251437384555154379121496693}{1209956705468699144257732512} a + \frac{21061733691011071810003750843}{111719335804943220986463968608}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29462583765900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1764 |
| The 25 conjugacy class representatives for [1/2.F_42(7)^2]2 |
| Character table for [1/2.F_42(7)^2]2 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| $7$ | 7.7.7.3 | $x^{7} + 35 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ |
| 7.7.7.2 | $x^{7} + 21 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| 13 | Data not computed | ||||||
| 37 | Data not computed | ||||||