Normalized defining polynomial
\( x^{14} - 231 x^{12} - 322 x^{11} + 18424 x^{10} + 40460 x^{9} - 641613 x^{8} - 1755568 x^{7} + 9524963 x^{6} + 30456902 x^{5} - 44562560 x^{4} - 185001208 x^{3} - 19133968 x^{2} + 239195712 x + 95554304 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8902889397738900740239456696953125=5^{7}\cdot 7^{24}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $266.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{976} a^{11} + \frac{43}{976} a^{10} + \frac{9}{122} a^{9} - \frac{15}{122} a^{8} - \frac{7}{61} a^{7} + \frac{55}{244} a^{6} + \frac{7}{976} a^{5} + \frac{1}{16} a^{4} - \frac{63}{244} a^{3} + \frac{9}{61} a^{2} - \frac{21}{61} a$, $\frac{1}{37088} a^{12} - \frac{1}{4636} a^{11} - \frac{2121}{37088} a^{10} - \frac{169}{4636} a^{9} + \frac{101}{2318} a^{8} + \frac{1727}{9272} a^{7} - \frac{4381}{37088} a^{6} + \frac{250}{1159} a^{5} - \frac{2875}{37088} a^{4} + \frac{4591}{9272} a^{3} - \frac{785}{2318} a^{2} - \frac{2189}{4636} a - \frac{9}{19}$, $\frac{1}{35217623345150664473605807576855992704} a^{13} - \frac{106398440992233568959167470209393}{17608811672575332236802903788427996352} a^{12} + \frac{5401469863349532210144977513163541}{35217623345150664473605807576855992704} a^{11} - \frac{482957063025981184453932096803241595}{8804405836287666118401451894213998176} a^{10} - \frac{432834783549229537619980186646538049}{4402202918143833059200725947106999088} a^{9} - \frac{81837228666773351706434956567806649}{8804405836287666118401451894213998176} a^{8} + \frac{7383178344709043366038284663132901371}{35217623345150664473605807576855992704} a^{7} - \frac{1586007052574398474803440982811894355}{17608811672575332236802903788427996352} a^{6} - \frac{5386562634481001552780717205591446377}{35217623345150664473605807576855992704} a^{5} - \frac{756871052191831403209707049945162597}{4402202918143833059200725947106999088} a^{4} + \frac{1330793327662639872761196963317459657}{4402202918143833059200725947106999088} a^{3} + \frac{2055130497997594620191091865946486099}{4402202918143833059200725947106999088} a^{2} + \frac{228946754846085868917016926510668485}{550275364767979132400090743388374886} a - \frac{1567612120769154523399178611590131}{4510453809573599445902383142527663}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24648398601900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 7 | Data not computed | ||||||
| $29$ | 29.7.6.5 | $x^{7} + 58$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |