Normalized defining polynomial
\( x^{14} - x^{13} - 42 x^{12} + 41 x^{11} + 646 x^{10} - 606 x^{9} - 4602 x^{8} + 4383 x^{7} + 15261 x^{6} - 16163 x^{5} - 18628 x^{4} + 25257 x^{3} - 1451 x^{2} - 4386 x + 289 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(801611618199890796015625=5^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(145=5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{145}(64,·)$, $\chi_{145}(1,·)$, $\chi_{145}(34,·)$, $\chi_{145}(4,·)$, $\chi_{145}(16,·)$, $\chi_{145}(129,·)$, $\chi_{145}(136,·)$, $\chi_{145}(9,·)$, $\chi_{145}(109,·)$, $\chi_{145}(141,·)$, $\chi_{145}(144,·)$, $\chi_{145}(81,·)$, $\chi_{145}(36,·)$, $\chi_{145}(111,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{17} a^{9} + \frac{5}{17} a^{8} + \frac{6}{17} a^{7} + \frac{1}{17} a^{6} + \frac{8}{17} a^{5} - \frac{7}{17} a^{4} + \frac{1}{17} a^{3} + \frac{4}{17} a^{2} + \frac{4}{17} a$, $\frac{1}{17} a^{10} - \frac{2}{17} a^{8} + \frac{5}{17} a^{7} + \frac{3}{17} a^{6} + \frac{4}{17} a^{5} + \frac{2}{17} a^{4} - \frac{1}{17} a^{3} + \frac{1}{17} a^{2} - \frac{3}{17} a$, $\frac{1}{17} a^{11} - \frac{2}{17} a^{8} - \frac{2}{17} a^{7} + \frac{6}{17} a^{6} + \frac{1}{17} a^{5} + \frac{2}{17} a^{4} + \frac{3}{17} a^{3} + \frac{5}{17} a^{2} + \frac{8}{17} a$, $\frac{1}{1003} a^{12} - \frac{15}{1003} a^{11} + \frac{23}{1003} a^{10} + \frac{6}{1003} a^{9} + \frac{7}{17} a^{8} + \frac{471}{1003} a^{7} + \frac{73}{1003} a^{6} + \frac{143}{1003} a^{5} - \frac{394}{1003} a^{4} + \frac{183}{1003} a^{3} + \frac{481}{1003} a^{2} - \frac{106}{1003} a + \frac{5}{59}$, $\frac{1}{4170455507689} a^{13} + \frac{16600817}{70685686571} a^{12} + \frac{87876081170}{4170455507689} a^{11} + \frac{120359817215}{4170455507689} a^{10} + \frac{4177300980}{4170455507689} a^{9} - \frac{73588596474}{4170455507689} a^{8} + \frac{102819793823}{245320912217} a^{7} + \frac{1146891971111}{4170455507689} a^{6} - \frac{1718148218415}{4170455507689} a^{5} - \frac{836443952500}{4170455507689} a^{4} + \frac{836596380629}{4170455507689} a^{3} + \frac{1348710426515}{4170455507689} a^{2} - \frac{1970416894120}{4170455507689} a + \frac{40183640366}{245320912217}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9017290.60896 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |