Normalized defining polynomial
\( x^{14} - 2 x^{13} - 37 x^{12} + 62 x^{11} + 450 x^{10} - 640 x^{9} - 2333 x^{8} + 2584 x^{7} + 5734 x^{6} - 4278 x^{5} - 6342 x^{4} + 2284 x^{3} + 2429 x^{2} + 338 x - 17 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(742003380228915810271232=2^{21}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(232=2^{3}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{232}(1,·)$, $\chi_{232}(197,·)$, $\chi_{232}(165,·)$, $\chi_{232}(65,·)$, $\chi_{232}(161,·)$, $\chi_{232}(141,·)$, $\chi_{232}(45,·)$, $\chi_{232}(81,·)$, $\chi_{232}(181,·)$, $\chi_{232}(169,·)$, $\chi_{232}(25,·)$, $\chi_{232}(49,·)$, $\chi_{232}(53,·)$, $\chi_{232}(117,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} - \frac{5}{17} a^{9} - \frac{7}{17} a^{8} + \frac{1}{17} a^{7} - \frac{7}{17} a^{4} + \frac{1}{17} a^{3} - \frac{1}{17} a^{2} + \frac{5}{17} a$, $\frac{1}{17} a^{11} + \frac{2}{17} a^{9} + \frac{5}{17} a^{7} - \frac{7}{17} a^{5} + \frac{4}{17} a^{3} + \frac{8}{17} a$, $\frac{1}{17} a^{12} - \frac{7}{17} a^{9} + \frac{2}{17} a^{8} - \frac{2}{17} a^{7} - \frac{7}{17} a^{6} + \frac{1}{17} a^{4} - \frac{2}{17} a^{3} - \frac{7}{17} a^{2} + \frac{7}{17} a$, $\frac{1}{12794311985681} a^{13} + \frac{208169850339}{12794311985681} a^{12} + \frac{18799820314}{752606587393} a^{11} - \frac{232361762071}{12794311985681} a^{10} - \frac{4452937222944}{12794311985681} a^{9} + \frac{1164766358101}{12794311985681} a^{8} + \frac{4301597934804}{12794311985681} a^{7} + \frac{4765674360786}{12794311985681} a^{6} + \frac{137907297644}{12794311985681} a^{5} + \frac{5477277152127}{12794311985681} a^{4} + \frac{4248180905098}{12794311985681} a^{3} - \frac{381451018248}{12794311985681} a^{2} - \frac{5686566882170}{12794311985681} a - \frac{273459474355}{752606587393}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36310148.8597 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |