Normalized defining polynomial
\( x^{14} - x^{13} - 100 x^{12} + 99 x^{11} + 3546 x^{10} - 3448 x^{9} - 56106 x^{8} + 60585 x^{7} + 392145 x^{6} - 556143 x^{5} - 905100 x^{4} + 1955033 x^{3} - 820295 x^{2} - 98752 x + 40193 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(643839235225770969752703713=13^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(377=13\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{377}(64,·)$, $\chi_{377}(1,·)$, $\chi_{377}(324,·)$, $\chi_{377}(326,·)$, $\chi_{377}(38,·)$, $\chi_{377}(129,·)$, $\chi_{377}(170,·)$, $\chi_{377}(207,·)$, $\chi_{377}(248,·)$, $\chi_{377}(339,·)$, $\chi_{377}(53,·)$, $\chi_{377}(376,·)$, $\chi_{377}(313,·)$, $\chi_{377}(51,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} - \frac{13}{41} a^{11} + \frac{10}{41} a^{10} + \frac{3}{41} a^{9} + \frac{16}{41} a^{8} - \frac{6}{41} a^{7} + \frac{15}{41} a^{6} + \frac{1}{41} a^{5} + \frac{16}{41} a^{4} - \frac{11}{41} a^{3} - \frac{14}{41} a^{2} + \frac{7}{41} a + \frac{19}{41}$, $\frac{1}{6136939860308177773805548110896431} a^{13} - \frac{104973750024496558998164412977}{149681460007516531068428002704791} a^{12} + \frac{2274511929793934389557865534351582}{6136939860308177773805548110896431} a^{11} - \frac{791738555072517462074223707717740}{6136939860308177773805548110896431} a^{10} - \frac{1980092736982982844095425775036744}{6136939860308177773805548110896431} a^{9} - \frac{1306479248442413547924016298248953}{6136939860308177773805548110896431} a^{8} - \frac{2034066367213930873893846371151437}{6136939860308177773805548110896431} a^{7} + \frac{1550230605912532949429398518431524}{6136939860308177773805548110896431} a^{6} + \frac{2688500841712291442564445123203831}{6136939860308177773805548110896431} a^{5} + \frac{217321005548970568489522878245595}{6136939860308177773805548110896431} a^{4} - \frac{1595297953073112082368488446531494}{6136939860308177773805548110896431} a^{3} - \frac{1290274560838652298919696144430884}{6136939860308177773805548110896431} a^{2} + \frac{2148244362241661552530864129698248}{6136939860308177773805548110896431} a - \frac{1745121860485322635931634462688029}{6136939860308177773805548110896431}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 278026941.252397 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{377}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.14.7.1 | $x^{14} - 43940 x^{8} + 482680900 x^{2} - 250994068$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |