Normalized defining polynomial
\( x^{14} - 154 x^{12} + 9317 x^{10} - 279510 x^{8} - 12606 x^{7} + 4304454 x^{6} + 970662 x^{5} - 31565996 x^{4} - 21354564 x^{3} + 86806489 x^{2} + 117450102 x + 38710804 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62068650315722446859495441640000000000=2^{12}\cdot 3^{6}\cdot 5^{10}\cdot 7^{14}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $500.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{902} a^{7} - \frac{7}{82} a^{5} - \frac{5}{41} a^{3} - \frac{27}{82} a - \frac{20}{41}$, $\frac{1}{902} a^{8} - \frac{7}{82} a^{6} - \frac{5}{41} a^{4} - \frac{27}{82} a^{2} - \frac{20}{41} a$, $\frac{1}{902} a^{9} + \frac{25}{82} a^{5} + \frac{23}{82} a^{3} - \frac{20}{41} a^{2} - \frac{29}{82} a + \frac{18}{41}$, $\frac{1}{9922} a^{10} - \frac{35}{82} a^{6} + \frac{17}{82} a^{4} + \frac{21}{451} a^{3} - \frac{25}{82} a^{2} - \frac{17}{41} a$, $\frac{1}{883058} a^{11} - \frac{5}{441529} a^{10} - \frac{1}{7298} a^{9} + \frac{1}{7298} a^{8} + \frac{39}{80278} a^{7} + \frac{273}{7298} a^{6} + \frac{1134}{3649} a^{5} - \frac{12794}{40139} a^{4} + \frac{13276}{40139} a^{3} - \frac{1937}{7298} a^{2} + \frac{3121}{7298} a + \frac{219}{3649}$, $\frac{1}{9713638} a^{12} - \frac{6}{441529} a^{10} - \frac{9}{80278} a^{9} - \frac{35}{80278} a^{8} + \frac{1}{80278} a^{7} + \frac{511}{7298} a^{6} - \frac{199376}{441529} a^{5} + \frac{2045}{7298} a^{4} + \frac{27169}{80278} a^{3} + \frac{1806}{3649} a^{2} - \frac{212}{3649} a + \frac{1704}{3649}$, $\frac{1}{9713638} a^{13} - \frac{1}{21538} a^{10} + \frac{1}{7298} a^{9} + \frac{2}{3649} a^{8} + \frac{37}{80278} a^{7} + \frac{202255}{883058} a^{6} + \frac{3095}{7298} a^{5} + \frac{4023}{80278} a^{4} + \frac{16486}{40139} a^{3} - \frac{3643}{7298} a^{2} - \frac{218}{3649} a - \frac{843}{3649}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409687527821000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 16 conjugacy class representatives for [1/6_+.F_42(7)^2]2_2 |
| Character table for [1/6_+.F_42(7)^2]2_2 |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |