Properties

Label 14.14.5939262421...0000.1
Degree $14$
Signature $[14, 0]$
Discriminant $2^{16}\cdot 5^{7}\cdot 7^{8}\cdot 19^{5}\cdot 93319^{3}$
Root discriminant $499.03$
Ramified primes $2, 5, 7, 19, 93319$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 14T45

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2589545456, -12992824640, -10859275264, -604500464, 2357606616, 846683944, 29134016, -29533232, -3552936, 320088, 61042, -1110, -409, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 409*x^12 - 1110*x^11 + 61042*x^10 + 320088*x^9 - 3552936*x^8 - 29533232*x^7 + 29134016*x^6 + 846683944*x^5 + 2357606616*x^4 - 604500464*x^3 - 10859275264*x^2 - 12992824640*x - 2589545456)
 
gp: K = bnfinit(x^14 - 409*x^12 - 1110*x^11 + 61042*x^10 + 320088*x^9 - 3552936*x^8 - 29533232*x^7 + 29134016*x^6 + 846683944*x^5 + 2357606616*x^4 - 604500464*x^3 - 10859275264*x^2 - 12992824640*x - 2589545456, 1)
 

Normalized defining polynomial

\( x^{14} - 409 x^{12} - 1110 x^{11} + 61042 x^{10} + 320088 x^{9} - 3552936 x^{8} - 29533232 x^{7} + 29134016 x^{6} + 846683944 x^{5} + 2357606616 x^{4} - 604500464 x^{3} - 10859275264 x^{2} - 12992824640 x - 2589545456 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(59392624219577526338317393617920000000=2^{16}\cdot 5^{7}\cdot 7^{8}\cdot 19^{5}\cdot 93319^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $499.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7, 19, 93319$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6681373502182958393021181902170110258586153872944} a^{13} - \frac{103248447673991360804194029260192764192744590595}{3340686751091479196510590951085055129293076936472} a^{12} - \frac{346448919315377564787841511150513666556906800073}{6681373502182958393021181902170110258586153872944} a^{11} + \frac{16248333040418412575647107927088320791088164399}{417585843886434899563823868885631891161634617059} a^{10} - \frac{2603542453410173580478112052495018531029250333}{835171687772869799127647737771263782323269234118} a^{9} + \frac{320834864678114047053698878580159654158095391813}{3340686751091479196510590951085055129293076936472} a^{8} + \frac{206169216376959003473503612245323468021427124621}{1670343375545739598255295475542527564646538468236} a^{7} - \frac{269041331936678128897029338207594036138325009239}{1670343375545739598255295475542527564646538468236} a^{6} + \frac{320049851750115437768987058954348225551604762805}{1670343375545739598255295475542527564646538468236} a^{5} - \frac{195076815796027225730497276810987352912500958079}{835171687772869799127647737771263782323269234118} a^{4} + \frac{323295889349469690973405549234468734844592004843}{835171687772869799127647737771263782323269234118} a^{3} - \frac{406619283993621770629943027593949539033987872237}{835171687772869799127647737771263782323269234118} a^{2} - \frac{69199141482360061007352193756098822099410175377}{417585843886434899563823868885631891161634617059} a - \frac{97148748191083593843160922620800427222712711281}{417585843886434899563823868885631891161634617059}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 371454666692000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

14T45:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 3528
The 35 conjugacy class representatives for [F_42(7)^2]2=F_42(7)wr2
Character table for [F_42(7)^2]2=F_42(7)wr2 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 28 siblings: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ R R ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ R ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.14.0.1}{14} }$ ${\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.12.16.18$x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$$6$$2$$16$$C_3 : C_4$$[2]_{3}^{2}$
$5$5.14.7.1$x^{14} - 250 x^{8} + 15625 x^{2} - 312500$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.12.8.1$x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.6.0.1$x^{6} - x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
19.6.5.2$x^{6} - 19$$6$$1$$5$$C_6$$[\ ]_{6}$
93319Data not computed