Normalized defining polynomial
\( x^{14} - x^{13} - 52 x^{12} + 31 x^{11} + 908 x^{10} - 162 x^{9} - 6351 x^{8} - 856 x^{7} + 16495 x^{6} + 3600 x^{5} - 18257 x^{4} - 3381 x^{3} + 8945 x^{2} + 874 x - 1583 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(489801110321660601428677553=113^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{113}(64,·)$, $\chi_{113}(1,·)$, $\chi_{113}(4,·)$, $\chi_{113}(16,·)$, $\chi_{113}(7,·)$, $\chi_{113}(106,·)$, $\chi_{113}(109,·)$, $\chi_{113}(112,·)$, $\chi_{113}(49,·)$, $\chi_{113}(83,·)$, $\chi_{113}(97,·)$, $\chi_{113}(28,·)$, $\chi_{113}(30,·)$, $\chi_{113}(85,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{35578803801412210091} a^{13} + \frac{6903031322650652525}{35578803801412210091} a^{12} - \frac{3254387418069573411}{35578803801412210091} a^{11} - \frac{15355461326495579806}{35578803801412210091} a^{10} - \frac{13869289227140863170}{35578803801412210091} a^{9} + \frac{15735208656282060120}{35578803801412210091} a^{8} + \frac{15258045001869129938}{35578803801412210091} a^{7} + \frac{13485182429524347922}{35578803801412210091} a^{6} + \frac{7832743953553772518}{35578803801412210091} a^{5} + \frac{11334368163651726455}{35578803801412210091} a^{4} - \frac{12027358933835694225}{35578803801412210091} a^{3} + \frac{17547397941017992219}{35578803801412210091} a^{2} + \frac{6633733564656019584}{35578803801412210091} a + \frac{17250476101097264885}{35578803801412210091}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 392671339.436 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{113}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $113$ | 113.14.13.1 | $x^{14} - 113$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |