Normalized defining polynomial
\( x^{14} - 6 x^{13} - 457 x^{12} + 2720 x^{11} + 64336 x^{10} - 240364 x^{9} - 4549640 x^{8} + 4488436 x^{7} + 160506141 x^{6} + 181130646 x^{5} - 2435588247 x^{4} - 6624859400 x^{3} + 8042614275 x^{2} + 46379325210 x + 44040163721 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(438334755667873937053743125776163667968=2^{27}\cdot 7^{12}\cdot 223^{3}\cdot 463^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $575.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 223, 463$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{1130506560180518433467823866040754421658170980744942} a^{13} - \frac{267013045763936692427710588130346878928783363528857}{1130506560180518433467823866040754421658170980744942} a^{12} - \frac{106368016398975923302255183823043846527631106761860}{565253280090259216733911933020377210829085490372471} a^{11} + \frac{72827433849894491996625765297173991986840481130023}{565253280090259216733911933020377210829085490372471} a^{10} + \frac{148399123563832697573609409395911022674194486991098}{565253280090259216733911933020377210829085490372471} a^{9} - \frac{23703013036062470517851607532076204449310850288938}{565253280090259216733911933020377210829085490372471} a^{8} - \frac{235363415384441711273967540319530737893902282023531}{565253280090259216733911933020377210829085490372471} a^{7} - \frac{183454589095651239268020241947039772055184643782774}{565253280090259216733911933020377210829085490372471} a^{6} + \frac{260171085530651170449931784429934725382886616848299}{1130506560180518433467823866040754421658170980744942} a^{5} + \frac{1849140973605176171642940364394494572610977357041}{1130506560180518433467823866040754421658170980744942} a^{4} + \frac{145351294876209566228347458423719684741386250901634}{565253280090259216733911933020377210829085490372471} a^{3} + \frac{82149684592629779754628149005562010364844872806666}{565253280090259216733911933020377210829085490372471} a^{2} + \frac{386335965214884325449165028027417041688671731467321}{1130506560180518433467823866040754421658170980744942} a + \frac{477406127518679789201385478973835954021110207194485}{1130506560180518433467823866040754421658170980744942}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2024509344240000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3528 |
| The 35 conjugacy class representatives for [F_42(7)^2]2=F_42(7)wr2 |
| Character table for [F_42(7)^2]2=F_42(7)wr2 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.7.7.4 | $x^{7} + 14 x + 7$ | $7$ | $1$ | $7$ | $F_7$ | $[7/6]_{6}$ | |
| 223 | Data not computed | ||||||
| 463 | Data not computed | ||||||