Normalized defining polynomial
\( x^{14} - 4 x^{13} - 346 x^{12} + 146 x^{11} + 45973 x^{10} + 110038 x^{9} - 2593249 x^{8} - 11384888 x^{7} + 53650141 x^{6} + 348974586 x^{5} - 109694286 x^{4} - 2641431330 x^{3} + 223044192 x^{2} + 7815136932 x - 5730505137 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4024886456410352267069803892909801472=2^{21}\cdot 3^{16}\cdot 13^{8}\cdot 2719^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $411.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 2719$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{4}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} + \frac{4}{9} a^{3}$, $\frac{1}{93895283111766585150353382525549008534749389} a^{13} - \frac{797251438403991296773136981203225225493764}{93895283111766585150353382525549008534749389} a^{12} + \frac{1293556054080945168118482625539878279606351}{93895283111766585150353382525549008534749389} a^{11} - \frac{11182061025168152074024566123450653568503}{156753394176571928464696798874038411577211} a^{10} + \frac{7713943992721071223517053503284313164610763}{93895283111766585150353382525549008534749389} a^{9} - \frac{7347480876580988473897805372375647462057148}{93895283111766585150353382525549008534749389} a^{8} + \frac{38141191967672129721824701168142992807964177}{93895283111766585150353382525549008534749389} a^{7} + \frac{35182261565781373479492847068609803166869830}{93895283111766585150353382525549008534749389} a^{6} + \frac{29318202124088884395219125459030095674916648}{93895283111766585150353382525549008534749389} a^{5} + \frac{4068090984953747438524354991076827488090094}{10432809234640731683372598058394334281638821} a^{4} + \frac{15492308658377471956267472593648790998039718}{31298427703922195050117794175183002844916463} a^{3} + \frac{364938323067623312730596296683255647727194}{3477603078213577227790866019464778093879607} a^{2} - \frac{1230367647969058280979523870559567559410111}{3477603078213577227790866019464778093879607} a + \frac{276513173425669285647014934218977071496604}{3477603078213577227790866019464778093879607}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106512528185000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 882 |
| The 20 conjugacy class representatives for 1/2[1/2.F_42(7)^2]2 |
| Character table for 1/2[1/2.F_42(7)^2]2 |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 2719 | Data not computed | ||||||