Normalized defining polynomial
\( x^{14} - 56 x^{12} - 42 x^{11} + 1043 x^{10} + 1190 x^{9} - 7987 x^{8} - 11184 x^{7} + 22169 x^{6} + 37282 x^{5} - 5292 x^{4} - 22190 x^{3} - 3164 x^{2} + 3500 x + 881 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(401774962552217617093885952=2^{21}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(392=2^{3}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{392}(1,·)$, $\chi_{392}(197,·)$, $\chi_{392}(225,·)$, $\chi_{392}(169,·)$, $\chi_{392}(29,·)$, $\chi_{392}(141,·)$, $\chi_{392}(337,·)$, $\chi_{392}(365,·)$, $\chi_{392}(113,·)$, $\chi_{392}(85,·)$, $\chi_{392}(281,·)$, $\chi_{392}(57,·)$, $\chi_{392}(253,·)$, $\chi_{392}(309,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{31} a^{10} - \frac{14}{31} a^{9} + \frac{7}{31} a^{8} - \frac{13}{31} a^{7} - \frac{2}{31} a^{6} - \frac{11}{31} a^{5} - \frac{6}{31} a^{4} + \frac{10}{31} a^{3} + \frac{6}{31} a^{2} - \frac{3}{31} a - \frac{6}{31}$, $\frac{1}{31} a^{11} - \frac{3}{31} a^{9} - \frac{8}{31} a^{8} + \frac{2}{31} a^{7} - \frac{8}{31} a^{6} - \frac{5}{31} a^{5} - \frac{12}{31} a^{4} - \frac{9}{31} a^{3} - \frac{12}{31} a^{2} + \frac{14}{31} a + \frac{9}{31}$, $\frac{1}{589} a^{12} + \frac{3}{589} a^{11} + \frac{5}{589} a^{10} + \frac{243}{589} a^{9} + \frac{189}{589} a^{8} - \frac{199}{589} a^{7} - \frac{200}{589} a^{6} + \frac{288}{589} a^{5} + \frac{3}{19} a^{4} - \frac{207}{589} a^{3} - \frac{222}{589} a^{2} - \frac{66}{589} a - \frac{238}{589}$, $\frac{1}{108103235692815619} a^{13} + \frac{16726229385387}{108103235692815619} a^{12} - \frac{714636006765791}{108103235692815619} a^{11} + \frac{3658673466200}{108103235692815619} a^{10} - \frac{17309064199381876}{108103235692815619} a^{9} + \frac{37180538527012715}{108103235692815619} a^{8} + \frac{53233452441181129}{108103235692815619} a^{7} - \frac{856164377068916}{108103235692815619} a^{6} + \frac{51613309230747566}{108103235692815619} a^{5} + \frac{33261544072052112}{108103235692815619} a^{4} - \frac{16033303359860959}{108103235692815619} a^{3} - \frac{45061432883031384}{108103235692815619} a^{2} - \frac{17326636119746083}{108103235692815619} a - \frac{24176245364135575}{108103235692815619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 741991346.6880023 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |