Normalized defining polynomial
\( x^{14} - x^{13} - 41 x^{12} - 19 x^{11} + 585 x^{10} + 887 x^{9} - 2996 x^{8} - 7649 x^{7} + 1803 x^{6} + 19387 x^{5} + 16761 x^{4} - 45 x^{3} - 4323 x^{2} - 434 x + 337 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3757843639805369947326441=3^{7}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(129=3\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{129}(128,·)$, $\chi_{129}(1,·)$, $\chi_{129}(2,·)$, $\chi_{129}(4,·)$, $\chi_{129}(65,·)$, $\chi_{129}(8,·)$, $\chi_{129}(64,·)$, $\chi_{129}(32,·)$, $\chi_{129}(16,·)$, $\chi_{129}(113,·)$, $\chi_{129}(97,·)$, $\chi_{129}(121,·)$, $\chi_{129}(125,·)$, $\chi_{129}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{22021263193} a^{13} - \frac{5111742488}{22021263193} a^{12} - \frac{10553547164}{22021263193} a^{11} + \frac{6473991036}{22021263193} a^{10} - \frac{9862863353}{22021263193} a^{9} + \frac{3543158665}{22021263193} a^{8} + \frac{544668076}{22021263193} a^{7} - \frac{5156780828}{22021263193} a^{6} + \frac{6540340740}{22021263193} a^{5} + \frac{10330000822}{22021263193} a^{4} - \frac{8369430043}{22021263193} a^{3} + \frac{3854848764}{22021263193} a^{2} + \frac{6442325060}{22021263193} a - \frac{3029595438}{22021263193}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38725608.4697 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{129}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |