Normalized defining polynomial
\( x^{14} - 154 x^{12} + 9317 x^{10} - 279510 x^{8} - 17166 x^{7} + 4304454 x^{6} + 1321782 x^{5} - 31565996 x^{4} - 29079204 x^{3} + 86806489 x^{2} + 159935622 x + 73616884 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35036134976849482947240000000000=2^{12}\cdot 3^{6}\cdot 5^{10}\cdot 7^{14}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $179.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{202} a^{7} - \frac{77}{202} a^{5} + \frac{39}{101} a^{3} - \frac{25}{202} a + \frac{1}{101}$, $\frac{1}{202} a^{8} - \frac{77}{202} a^{6} + \frac{39}{101} a^{4} - \frac{25}{202} a^{2} + \frac{1}{101} a$, $\frac{1}{202} a^{9} + \frac{7}{202} a^{5} - \frac{79}{202} a^{3} + \frac{1}{101} a^{2} + \frac{95}{202} a - \frac{24}{101}$, $\frac{1}{202} a^{10} + \frac{7}{202} a^{6} - \frac{79}{202} a^{4} + \frac{1}{101} a^{3} + \frac{95}{202} a^{2} - \frac{24}{101} a$, $\frac{1}{1157662} a^{11} + \frac{15}{52621} a^{10} - \frac{11}{105242} a^{9} - \frac{87}{52621} a^{8} - \frac{37}{105242} a^{7} - \frac{4205}{52621} a^{6} + \frac{15400}{52621} a^{5} - \frac{67884}{578831} a^{4} + \frac{7687}{52621} a^{3} - \frac{444}{52621} a^{2} + \frac{4627}{105242} a - \frac{297}{52621}$, $\frac{1}{1157662} a^{12} - \frac{6}{52621} a^{10} - \frac{191}{105242} a^{9} + \frac{73}{105242} a^{8} + \frac{153}{105242} a^{7} + \frac{26565}{105242} a^{6} - \frac{155675}{578831} a^{5} - \frac{6125}{105242} a^{4} + \frac{753}{105242} a^{3} + \frac{16239}{52621} a^{2} + \frac{24000}{52621} a + \frac{24028}{52621}$, $\frac{1}{1157662} a^{13} + \frac{61}{52621} a^{10} + \frac{92}{52621} a^{9} + \frac{109}{105242} a^{8} - \frac{201}{105242} a^{7} + \frac{194419}{1157662} a^{6} - \frac{16490}{52621} a^{5} + \frac{13377}{52621} a^{4} + \frac{13795}{105242} a^{3} - \frac{38477}{105242} a^{2} - \frac{3371}{105242} a + \frac{6644}{52621}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 278502504145 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 16 conjugacy class representatives for [1/6_+.F_42(7)^2]2_2 |
| Character table for [1/6_+.F_42(7)^2]2_2 |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 7 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |