Properties

Label 14.14.3303260536...0000.1
Degree $14$
Signature $[14, 0]$
Discriminant $2^{16}\cdot 5^{4}\cdot 73^{8}$
Root discriminant $40.60$
Ramified primes $2, 5, 73$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $F_8:C_3$ (as 14T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-254, 52, 1398, -162, -2796, -66, 2612, 388, -1166, -244, 254, 54, -26, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 - 26*x^12 + 54*x^11 + 254*x^10 - 244*x^9 - 1166*x^8 + 388*x^7 + 2612*x^6 - 66*x^5 - 2796*x^4 - 162*x^3 + 1398*x^2 + 52*x - 254)
 
gp: K = bnfinit(x^14 - 4*x^13 - 26*x^12 + 54*x^11 + 254*x^10 - 244*x^9 - 1166*x^8 + 388*x^7 + 2612*x^6 - 66*x^5 - 2796*x^4 - 162*x^3 + 1398*x^2 + 52*x - 254, 1)
 

Normalized defining polynomial

\( x^{14} - 4 x^{13} - 26 x^{12} + 54 x^{11} + 254 x^{10} - 244 x^{9} - 1166 x^{8} + 388 x^{7} + 2612 x^{6} - 66 x^{5} - 2796 x^{4} - 162 x^{3} + 1398 x^{2} + 52 x - 254 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(33032605363981557760000=2^{16}\cdot 5^{4}\cdot 73^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 73$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9812995.52172 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$F_8:C_3$ (as 14T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 168
The 8 conjugacy class representatives for $F_8:C_3$
Character table for $F_8:C_3$

Intermediate fields

7.7.1817487424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 sibling: data not computed
Degree 24 sibling: data not computed
Degree 28 sibling: data not computed
Degree 42 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ R ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.16.4$x^{14} + 2 x^{13} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 2$$14$$1$$16$14T11$[10/7, 10/7, 10/7]_{7}^{3}$
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
5.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$73$$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{73}$$x + 5$$1$$1$$0$Trivial$[\ ]$
73.3.2.1$x^{3} - 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} - 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} - 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} - 73$$3$$1$$2$$C_3$$[\ ]_{3}$